Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
国会会議録に対する文短縮による報知的要約手法
Search
自然言語処理研究室
March 31, 2004
Research
0
260
国会会議録に対する文短縮による報知的要約手法
安達 康昭. 国会会議録に対する文短縮による報知的要約手法. 長岡技術科学大学課題研究報告書 (2004.3)
自然言語処理研究室
March 31, 2004
Tweet
Share
More Decks by 自然言語処理研究室
See All by 自然言語処理研究室
データサイエンス14_システム.pdf
jnlp
0
400
データサイエンス13_解析.pdf
jnlp
0
510
データサイエンス12_分類.pdf
jnlp
0
360
データサイエンス11_前処理.pdf
jnlp
0
480
Recurrent neural network based language model
jnlp
0
140
自然言語処理研究室 研究概要(2012年)
jnlp
0
150
自然言語処理研究室 研究概要(2013年)
jnlp
0
110
自然言語処理研究室 研究概要(2014年)
jnlp
0
130
自然言語処理研究室 研究概要(2015年)
jnlp
0
210
Other Decks in Research
See All in Research
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.7k
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
480
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
5
2.5k
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
130
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
740
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
820
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
140
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
130
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
160
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
470
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Why Our Code Smells
bkeepers
PRO
340
58k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
330
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
54
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
180
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
97
Six Lessons from altMBA
skipperchong
29
4.1k
Designing for humans not robots
tammielis
254
26k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Site-Speed That Sticks
csswizardry
13
1k
A Soul's Torment
seathinner
1
2.1k
Mind Mapping
helmedeiros
PRO
0
45
Transcript
国会会議録に対する 文短縮による報知的要約手法 長岡技術科学大学 電気系 山本研究室 報告者 安 達 康 昭
指導教官 山本 和英 講師 2004年 2月 27日 1
1 . はじめに 日本語話し言葉の要約 – 字幕 ・・・ NHK ,民放数社が生放送に付与
– 要約筆記 ・・・ 講演音声の文字伝達手段 話し言葉の研究が少ない – 言語資源 ( コーパス ) の不足 ⇒ コストがかかる 2 問題点 人間の読む能力に限界 ⇒ 報知的要約が必要 解決策 国会会議録を話し言葉コーパスとして利用 講演での発話の特徴も確認できる
2 . 国会会議録 1947年からの会議録をWebで公開 – 7.0 GB のテキストデータ (
2003年5月時点 ) • 毎日新聞コーパス 1年分 ・・・ 21 MB 書き起こし文書 – 話し言葉資源として利用 – 完全な書き起こしではない • フィラーの削除 • 言いよどみの削除 3
今直ちにお答えは無理かもしれませんけれども、 次年度に おきましてこれらに対して抜本的な施策をつくり上げていた だきたいと思いますが、 いかがでしょうか。 3 . 処理方法 (1/2)
挨拶文 ・・・ 「よろしくお願いします」等を削除 挿入句の削除 ・・・ 節の末尾で判断 敬語表現 ・・・ 敬語動詞を規則を用いて換言 次年度におきましてこれらに対して抜本的な施策をつくり上 げてほしいと思いますが、 どうでしょうか。 4
3 . 処理方法 (2/2) “ と思います”表現 ・・・ 直前の形態素で判断
丁寧表現 ・・・ “です”,“ます”の削除 “ という”表現処理 ・・・ 前後の形態素で判断 次年度におきましてこれらに対して抜本的な施策をつくり上 げてほしいと思いますが、 どうでしょうか。 次年度においてこれらに対して抜本的な施策をつくり上げて ほしいが、 どうか。 物事を語り合ったり理解を深めるという点で問題点が多い ということは指摘されているとおりであります。 5
4 . 実装と評価 処理対象 – 第100回から第155回の衆議院の会議録全て • 約20年分 (
1.08 GB) – ファイルサイズが120 kB 以上の会議録に限定 • 質疑応答形式の会議録は大きなファイルサイズになる • この制約により3960の会議録が対象になる 要約率で評価 要約率= 要約処理後の文字数 原文文字数 ×100 [%] 6
5 . 会議録毎の要約率 平均要約率 ・・・ 80.0% ばらつきが少ない要約 (
標準偏差 2.1 ) – 国会会議録の中で幅広く見られる表現を処理 7
7 . おわりに 要約率 – 会議録,発言者に依存しない要約を実現 – 80%を実現しているが字幕としては不十分 •
さらに文を短縮する必要がある ( 今後の課題 ) 処理規則 – 丁寧表現の処理 ⇒ 良好な換言結果 – 挿入句表現 ( 精度 80%) ,「という」表現( 精度 86%) • 不自然な文になる ( 今後の課題 ) 8
おわり 9