Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンス12_分類.pdf
Search
自然言語処理研究室
July 02, 2018
Education
0
350
データサイエンス12_分類.pdf
自然言語処理研究室
July 02, 2018
Tweet
Share
More Decks by 自然言語処理研究室
See All by 自然言語処理研究室
データサイエンス14_システム.pdf
jnlp
0
390
データサイエンス13_解析.pdf
jnlp
0
490
データサイエンス11_前処理.pdf
jnlp
0
470
Recurrent neural network based language model
jnlp
0
140
自然言語処理研究室 研究概要(2012年)
jnlp
0
140
自然言語処理研究室 研究概要(2013年)
jnlp
0
100
自然言語処理研究室 研究概要(2014年)
jnlp
0
130
自然言語処理研究室 研究概要(2015年)
jnlp
0
200
自然言語処理研究室 研究概要(2016年)
jnlp
0
200
Other Decks in Education
See All in Education
データで見る赤ちゃんの成長
syuchimu
0
350
20250807_がんばらないコミュニティ運営
ponponmikankan
1
200
「実践的探究」を志向する日本の教育研究における近年の展開 /jera2025
kiriem
0
130
Sanapilvet opetuksessa
matleenalaakso
0
34k
RSJ2025 ランチョンセミナー 一歩ずつ世界へ:学生・若手研究者のための等身大の国際化の始め方
t_inamura
0
330
KBS新事業創造体験2025_科目説明会
yasuchikawakayama
0
140
Web Architectures - Lecture 2 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.4k
Editor First: Customizing TYPO3 for a Cleaner Workflow
ulli
0
110
いわゆる「ふつう」のキャリアを歩んだ人の割合(若者向け)
hysmrk
0
220
20250830_MIEE祭_会社員視点での学びのヒント
ponponmikankan
1
180
あなたの言葉に力を与える、演繹的なアプローチ
logica0419
1
220
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
97
6.4k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
The Cult of Friendly URLs
andyhume
79
6.7k
A designer walks into a library…
pauljervisheath
210
24k
How STYLIGHT went responsive
nonsquared
100
5.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
Data Science
今日の内容 機械学習とは データ分類手法 決定木 最近傍法
SVM
machine learning
機械学習とは データを解析して、そこから何らかの規則性や知識など、有益な情報を獲得 するアルゴリズムの総称 データは大量にあることが前提 以前からある技術だが、データの整備、計算機の性能向上など、複数の要 因が近年に重なって一気に普及した。
「ビッグデータ」時代 AIブーム 人工知能の中心的技術ではあるが、機械学習のみが人工知能ではない。
教師あり学習と教師なし学習 教師あり学習 「教師データ」(正解)を付与したデータに基づく機械学習 例:ある人にとってある本が面白いかどうかのデータ。このデータを用いて未 知の本に対して面白いかどうか(=おすすめ本)を自動判別する。 一般に高コスト、ただし手作業での情報付与とは限らない
教師なし学習 「教師データ」が付与されていないデータに基づく機械学習 (教師あり学習と比較して)データは大規模だが低精度
分類と回帰 「教師データ」も2種類に分けることができる。 分類 いくつかの選択肢の中の一つ 例:スパムメール 回帰
ある値 例:明日の最高気温
その他の機械学習 半教師あり学習 教師ありと教師なしの中間 一部のデータにのみ正解が付与されている 強化学習
正解は付与されていない アルゴリズムの出力結果がどの程度正しそうかという情報「報酬」を得ること ができる
data classification
データを分類する 分類(classification) 未知の事例に対して、予め定義されたクラスのどれに所属するかを判断する処 理 クラス数は所与 教師あり学習
クラスタリング(clustering, クラスタ分析) 事例集合に対して、何らかの基準で類似するいくつかのクラスに分類する処理 クラス数は所与または自動決定 教師なし学習
決定木(けっていぎ, Decision Tree) データを木構造の形式で分類したもの エントロピー(乱雑さ)を分類基準に考える 解釈が容易
過学習しやすい=分類性能が(それほど)高くない これへの対処もいくつか検討されている
https://tokoname.mallkyujin.jp/contents/text/c106/
https://tokoname.mallkyujin.jp/contents/text/c106/ ファッ ション グッズ グル メ 美容 サービ ス 初対面の人とてもなんとなく話せる
〇 〇 〇 × × 好きなものから先に食べる × 〇 〇 〇 〇 お気に入りのお店は友達にも… × 〇 × × 〇 実は働きたくない 〇 〇 〇 〇 〇 ショッピングは色々比較してから… 〇 〇 × × 〇 一人よりも仲間とみんなでいる… × 〇 〇 〇 × 恋人とはLINEより電話で話したい 〇 〇 × × × 大勢の前でも緊張はしない 〇 × 〇 〇 × 自分のこだわりポイントは… 〇 × × × × ドタキャンされても気にしないほうだ × × 〇 〇 〇
最近傍法(k近傍法, k-nearest neighbor method) 「一番近いk個のサンプルを参考にクラスを決める」クラス分類法 最も lazy な機械学習手法
kの値によって結果が変わることがある
https://www.researchgate.net/figure/K-nearest-neighbor-algorithm-illustration-The-green-circle-is-the-sample-which-is-to-be_fig14_267953942
SVM(Support Vector Machine) N次元のベクトル(数値データ)を二値分類するための手法 決定木とは違って数値データのみが対象 マージン最大化
最も類似した項目(=サポートベクトル)をできるだけ明確に分類する仕組 み これはすなわち、SVMが統計的な分類手法ではないことも意味する カーネルトリック 分類しやすくするためにベクトルを高次元化するテクニック
http://www.bogotobogo.com/python/scikit-learn/scikit_machine_learning_Support_Vector_Machines_SVM.php
http://www.bogotobogo.com/python/scikit-learn/scikit_machine_learning_Support_Vector_Machines_SVM.php
https://towardsdatascience.com/understanding-the-kernel-trick-e0bc6112ef78
SVMで多値分類 one-vs-rest 法 one-vs-one 法
clustering
ハード/ソフトなクラスタリング ハードなクラスタリング 各事例はただ一つのクラスに属する ソフトなクラスタリング 各事例が複数のクラスに属することが許されている
クラスタリングの分類 凝集型(agglomerative) 事例数=クラス数が初期状態 だんだん凝集することでクラス数が減少していく 分割型(divisive)
初期状態は全事例が同一のクラスに所属する だんだん分割することでクラス数が増加していく
K-means (k平均法)アルゴリズム シンプルで効率的なクラスタリングアルゴリズム 初期シードを与え、収束するまで反復処理を繰り返す(次ページ)。 O(kn) (k:クラス数、n:事例数)の類似度比較を行う。通常、収束するま での反復処理の回数は非常に少ない。
問題:初期シードの与え方によって一般に結果が異なる。 対策1:シードを変えていろいろやってみる。 対策2:シードの与え方を少しまじめに考える。
https://rindalog.blogspot.com/2016/08/k-means.html
階層的凝集クラスタリング 初期化:すべての事例を異なったクラスに割り当てる 反復処理:最も類似度が高い2クラスを求め、それらを併合(1クラス 化)する。これを繰り返す。 終了条件:すべてが一つのクラスになるまで。 併合履歴はそのまま二分木になる
階層的凝集クラスタリング(続き) 類似度計算方法: 単一リンク:各事例対の類似度の中の最大値 完全リンク:各事例対の類似度の中の最小値 平均リンク:各事例対の類似度の平均値
重心:クラスの中心間の類似度
類似度とは何? ユークリッド距離:空間上の2点間の距離 , = ( − )2
コサイン類似度:ベクトルの角度(のコサイン値)