Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Web検索を用いた複合名詞同定
Search
自然言語処理研究室
March 31, 2008
Research
0
78
Web検索を用いた複合名詞同定
沢井 康孝, 山本 和英. Web検索を用いた複合名詞同定. 言語処理学会第14回年次大会, pp.205-208 (2008.3)
自然言語処理研究室
March 31, 2008
Tweet
Share
More Decks by 自然言語処理研究室
See All by 自然言語処理研究室
データサイエンス14_システム.pdf
jnlp
0
400
データサイエンス13_解析.pdf
jnlp
0
510
データサイエンス12_分類.pdf
jnlp
0
360
データサイエンス11_前処理.pdf
jnlp
0
490
Recurrent neural network based language model
jnlp
0
140
自然言語処理研究室 研究概要(2012年)
jnlp
0
150
自然言語処理研究室 研究概要(2013年)
jnlp
0
110
自然言語処理研究室 研究概要(2014年)
jnlp
0
140
自然言語処理研究室 研究概要(2015年)
jnlp
0
220
Other Decks in Research
See All in Research
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
760
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
2025-11-21-DA-10th-satellite
yegusa
0
110
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
110
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
290
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
600
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
170
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
930
Featured
See All Featured
Prompt Engineering for Job Search
mfonobong
0
160
The Curious Case for Waylosing
cassininazir
0
240
The World Runs on Bad Software
bkeepers
PRO
72
12k
Mobile First: as difficult as doing things right
swwweet
225
10k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
The Spectacular Lies of Maps
axbom
PRO
1
530
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
230
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
120
KATA
mclloyd
PRO
34
15k
Transcript
1 Web 検索を用いた複合名詞同定 長岡技術科学大学 電気系 自然言語処理研究室 沢井 康孝、山本 和英 2008
2 目的 • 複合名詞(複合語) – 低価格ノイズキャンセルヘッドホン – 低価格ノイズキャンセルヘッドホン? – 低価格、ノイズキャンセル、ヘッドホン?
– 低価格、ノイズキャンセルヘッドホン? • 問題 – どこで分割点するか、どこまでが一語か – 分野によって最適な長さは異なる
3 複合名詞同定の調査 • Webを大規模なコーパスに見立てた複合名 詞同定処理を行う – どの程度妥当であるか – 作成される複合名詞の特徴 –
どのような分野に向いているか • 二種類の方法の比較 – ヒット件数 – AND 検索と連接検索の比率
4 提案手法の概要 • 手法1 – ヒット件数に閾値を定める – 先行研究 • 評判情報の抽出
[ 峠ら ,06] • ドメイン特徴語の抽出 • 手法2 – ヒット件数の割合に閾値を定める ヒット件数によって妥当性を判定 ヒット件数 閾値 1000 件
5 概要:複合名詞の同定 • Step1 – 複合名詞候補の抽出 • Step2 – 複合名詞同定処理
– 同定の優先順 (1: 長さ、 2: 値の大きさ ) • 複合名詞の候補 – 対象とする品詞の連接部分 – 対象:名詞、接尾、接頭、未知語、記号
6 同定基準1:ヒット件数 • ヒット件数に閾値を設定 – ヒット件数で妥当性を測る DNS サーバー アドレス 手動 設定 3 3 3
3 3 5 万 2 千 3 万 Hit 数 分割点 ( 閾値 1000)
7 同定基準2:ヒット割合 • ヒット件数の割合に閾値を設定 – AND 検索と連接検索(割合 = 連接 /AND)
DNS サーバー アドレス 手動 設定 3 3 3 3 0 0.01 0.5 0.04 割合 0 0.1 分割点 ( 閾値 0.1)
8 対象テキスト • 様々な語句を対象とする – Web テキスト – Blog, 掲示板
,etc • 対象テキスト – Livedoor Blog – 価格コム掲示板
9 評価方法 • 無作為にサンプリング • 人手による評価 – 被験者3人の平均を利用 – 正解例、不正解例をあらかじめ提示
– 対象の語句が妥当であるか判断 • 形態素数別に評価
10 複合名詞の候補数 形態素数 価格コム 候補自体の精度 2 155585 60944 0.69 3
94116 47839 0.54 4 29983 16199 0.45 5 9533 4853 0.33 Blog × 部長キタ × タイトルうろ覚えビート 形態素数の増加⇔精度の低下
11 同定後の複合名詞の評価 形態素数 ヒット件数 ヒット割合 ヒット割合 閾値 1000 0.1 0.05
2 0.77 0.87 0.91 3 0.80 0.84 0.87 4 0.69 0.80 0.79 5 0.69 0.78 0.81 形態素数が多い複合名詞が良好
12 形態素数 形態素数 2 3 4 5 ヒット件数後 392 197
55 20 ヒット割合後 409 99 25 11 • 2 ~ 5 形態素の複合名詞候補を対象とする – 各形態素数別に 100 件 • 同定処理後の複合名詞の形態素数の変化 • ヒット件数:形態素数が多い • ヒット割合:形態素数が少ない
13 • 検索ヒット数(閾値 1000 ) – 住宅用アルミ / 建材 /
カラーサンプル – USBサウンドデバイス / サウンドカード – 液晶プロジェクタ / 接続用アダプタ – 勝ち組VS負け組 – 等速ダビング / 完了時 – データ / 通信用カード / 形 • 検索ヒット割合(閾値 0.05 ) – 住宅用 / アルミ建材 / カラーサンプル – USB / サウンドデバイス / サウンドカード – 液晶プロジェクタ / 接続用 / アダプタ – 勝ち組 / VS / 負け組 – 等速ダビング / 完了時 – データ / 通信用 / カード形
14 特徴および問題 • ヒット件数 – 長い複合名詞を同定しやすい – ある程度連接すると判断できない – 出現が少ない語彙に弱い
• ヒット割合 – 短く分割する – 出現が少ない語彙に対しても判断できる
15 まとめ、展望 • Web を対象 – 特に形態素数が多い語彙に問題 – 両方の方法で良好な結果 •
2 つの方法を使用する – 処理によって必要とする単位が異なる – 両者に利点と欠点 展望:実際に幾つかのタスクを想定して 比較、実験を行う
16 Web 特有の表現 • Web 特有の表現を幾つか抽出 – なめ ら かさ – こ ー ゆ ー
– めん ど くせ え – ハズ カシ ク ナイ – お k Web を解析する際の辞書として有益?
17 先行研究の精度 • 先行研究 – 人手評価 – 対象:掲示板 – ドメイン固定
• 携帯電話 • 車 • デジタルカメラ 形態素数 ヒット件数 閾値 1000 2 0.81 3 0.78 4 0.73 5 0.79
18 実際の例