Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Firebase ML Kit for iOS Developer
Search
Kajornsak Peerapathananont
October 07, 2018
Technology
0
60
Firebase ML Kit for iOS Developer
Firebase Dev Day 2018 @Bangkok, Thailand
Kajornsak Peerapathananont
October 07, 2018
Tweet
Share
More Decks by Kajornsak Peerapathananont
See All by Kajornsak Peerapathananont
Understanding your Android build
kajornsakp
0
27
iOSDevTH #21
kajornsakp
0
34
What's new in Flutter (Google I/O Extended Bangkok 22)
kajornsakp
0
51
Mobile Design System at scale
kajornsakp
0
75
What's new in Flutter 2020
kajornsakp
0
52
Mobile Machine Learning for All Skill Levels
kajornsakp
0
26
What's new in Flutter 1.9
kajornsakp
0
47
Kotlin meets Web
kajornsakp
0
19
From design to develop with Material Components
kajornsakp
0
130
Other Decks in Technology
See All in Technology
技術に触れたり、顔を出そう
maruto
1
150
Evolving Architecture
rainerhahnekamp
3
250
20250116_JAWS_Osaka
takuyay0ne
2
200
AIアプリケーション開発でAzure AI Searchを使いこなすためには
isidaitc
0
110
iPadOS18でフローティングタブバーを解除してみた
sansantech
PRO
1
140
ドメイン駆動設計の実践により事業の成長スピードと保守性を両立するショッピングクーポン
lycorptech_jp
PRO
12
2.1k
Amazon Q Developerで.NET Frameworkプロジェクトをモダナイズしてみた
kenichirokimura
1
200
CDKのコードレビューを楽にするパッケージcdk-mentorを作ってみた/cdk-mentor
tomoki10
0
210
生成AIのビジネス活用
seosoft
0
110
Oracle Base Database Service:サービス概要のご紹介
oracle4engineer
PRO
1
16k
embedパッケージを深掘りする / Deep Dive into embed Package in Go
task4233
1
210
Bring Your Own Container: When Containers Turn the Key to EDR Bypass/byoc-avtokyo2024
tkmru
0
860
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
173
51k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.1k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
GraphQLとの向き合い方2022年版
quramy
44
13k
Documentation Writing (for coders)
carmenintech
67
4.5k
Unsuck your backbone
ammeep
669
57k
jQuery: Nuts, Bolts and Bling
dougneiner
62
7.6k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.7k
Transcript
ML Kit for iOS developers Kajornsak Peerapathananont Agoda
Machine Learning
#FirebaseDevDay
Google Lens
Smart Reply
On-device Machine Learning
#FirebaseDevDay Doable, but hard.
#FirebaseDevDay
#FirebaseDevDay Get Image Image Classification Transform Interpret Get Result
#FirebaseDevDay Transform unsigned char *sourceBaseAddr = (unsigned char *)(CVPixelBufferGetBaseAddress(pixelBuffer)); int
image_height; unsigned char *sourceStartAddr; if (fullHeight <= image_width) { image_height = fullHeight; sourceStartAddr = sourceBaseAddr; } else { image_height = image_width; const int marginY = ((fullHeight - image_width) / 2); sourceStartAddr = (sourceBaseAddr + (marginY * sourceRowBytes)); } const int image_channels = 4; assert(image_channels >= wanted_input_channels); tensorflow::Tensor image_tensor( tensorflow::DT_FLOAT, tensorflow::TensorShape( {1, wanted_input_height, wanted_input_width, wanted_input_channels})); auto image_tensor_mapped = image_tensor.tensor<float, 4>(); tensorflow::uint8 *in = sourceStartAddr; float *out = image_tensor_mapped.data(); for (int y = 0; y < wanted_input_height; ++y) { float *out_row = out + (y * wanted_input_width * wanted_input_channels); for (int x = 0; x < wanted_input_width; ++x) { const int in_x = (y * image_width) / wanted_input_width; const int in_y = (x * image_height) / wanted_input_height; tensorflow::uint8 *in_pixel = in + (in_y * image_width * image_channels) + (in_x * image_channels); float *out_pixel = out_row + (x * wanted_input_channels); for (int c = 0; c < wanted_input_channels; ++c) { out_pixel[c] = (in_pixel[c] - input_mean) / input_std; } } }
#FirebaseDevDay Interpret if (tf_session.get()) { std::vector<tensorflow::Tensor> outputs; tensorflow::Status run_status =
tf_session->Run( {{input_layer_name, image_tensor}}, {output_layer_name}, {}, &outputs); if (!run_status.ok()) { LOG(ERROR) << "Running model failed:" << run_status; } else { tensorflow::Tensor *output = &outputs[0]; auto predictions = output->flat<float>(); NSMutableDictionary *newValues = [NSMutableDictionary dictionary]; for (int index = 0; index < predictions.size(); index += 1) { const float predictionValue = predictions(index); if (predictionValue > 0.05f) { std::string label = labels[index % predictions.size()]; NSString *labelObject = [NSString stringWithUTF8String:label.c_str()]; NSNumber *valueObject = [NSNumber numberWithFloat:predictionValue]; [newValues setObject:valueObject forKey:labelObject]; } } dispatch_async(dispatch_get_main_queue(), ^(void) { [self setPredictionValues:newValues]; }); } }
None
#FirebaseDevDay
#FirebaseDevDay Real-world Common Use Cases
#FirebaseDevDay FIRVisionImage | VisionImage NS_SWIFT_NAME(VisionImage) @interface FIRVisionImage : NSObject @property(nonatomic,
nullable) FIRVisionImageMetadata *metadata; - (instancetype)initWithImage:(UIImage *)image NS_DESIGNATED_INITIALIZER; - (instancetype)initWithBuffer:(CMSampleBufferRef)sampleBuffer NS_DESIGNATED_INITIALIZER; - (instancetype)init NS_UNAVAILABLE; @end
Text Recognition - On-device - On-cloud
#FirebaseDevDay https://firebase.google.com/docs/ml-kit/recognize-text
#FirebaseDevDay FIRVisionText | VisionText NS_SWIFT_NAME(VisionText) @interface FIRVisionText : NSObject @property(nonatomic,
readonly) NSString *text; @property(nonatomic, readonly) NSArray<FIRVisionTextBlock *> *blocks; - (instancetype)init NS_UNAVAILABLE; @end
#FirebaseDevDay On-device Usage let textRecognizer = vision.onDeviceTextRecognizer() textRecognizer.process(visionImage) { (text,
error) in guard let text = text else { return } // do something with your text }
#FirebaseDevDay On-cloud Usage let textRecognizer = vision.cloudTextRecognize() textRecognizer.process(visionImage) { (text,
error) in guard let text = text else { return } // do something with your text }
Image Labeling - On-device (400+ labels) - On-cloud (10,000+ labels)
#FirebaseDevDay https://firebase.google.com/docs/ml-kit/label-images
#FirebaseDevDay FIRVisionLabel | VisionLabel NS_SWIFT_NAME(VisionLabel) @interface FIRVisionLabel : NSObject @property(nonatomic,
readonly) CGRect frame; @property(nonatomic, readonly) float confidence; @property(nonatomic, copy, readonly) NSString *entityID; @property(nonatomic, copy, readonly) NSString *label; @end
#FirebaseDevDay On-device Usage let labelDetector = vision.labelDetector() labelDetector.detect(in: visionImage) {
(labels, error) in guard let error == nill, let labels = labels, !labels.isEmpty else { return } // do something with your labels }
#FirebaseDevDay On-cloud Usage let labelDetector = vision.cloudLabelDetector() labelDetector.detect(in: visionImage) {
(labels, error) in guard let error == nill, let labels = labels, !labels.isEmpty else { return } // do something with your labels }
Face detection - On-device
#FirebaseDevDay
#FirebaseDevDay FIRVisionFace | VisionFace NS_SWIFT_NAME(VisionFace) @interface FIRVisionFace : NSObject @property(nonatomic,
readonly) CGRect frame; @property(nonatomic, readonly) BOOL hasTrackingID; @property(nonatomic, readonly) NSInteger trackingID; @property(nonatomic, readonly) BOOL hasHeadEulerAngleY; @property(nonatomic, readonly) CGFloat headEulerAngleY; @property(nonatomic, readonly) BOOL hasHeadEulerAngleZ; @property(nonatomic, readonly) CGFloat headEulerAngleZ; @property(nonatomic, readonly) BOOL hasSmilingProbability; @property(nonatomic, readonly) CGFloat smilingProbability; @property(nonatomic, readonly) BOOL hasLeftEyeOpenProbability; @property(nonatomic, readonly) CGFloat leftEyeOpenProbability; @property(nonatomic, readonly) BOOL hasRightEyeOpenProbability; @property(nonatomic, readonly) CGFloat rightEyeOpenProbability; - (instancetype)init NS_UNAVAILABLE; - (nullable FIRVisionFaceLandmark *)landmarkOfType:(FIRFaceLandmarkType)type; #ifdef ENABLE_FACE_CONTOUR - (nullable FIRVisionFaceContour *)contourOfType:(FIRFaceContourType)type; #endif // ENABLE_FACE_CONTOUR @end
#FirebaseDevDay On-device Usage let faceDetector = vision.faceDetector() faceDetector.detect(in: visionImage) {
(faces, error) in guard let error == nill, let faces = faces, !faces.isEmpty else { return } // do something with your faces }
#FirebaseDevDay Face Contour?
Landmark recognition - On-cloud
#FirebaseDevDay
#FirebaseDevDay FIRVisionCloudLandmark | VisionCloudLandmark NS_SWIFT_NAME(VisionCloudLandmark) @interface FIRVisionCloudLandmark : NSObject @property(nonatomic,
copy, readonly, nullable) NSString *entityId; @property(nonatomic, copy, readonly, nullable) NSString *landmark; @property(nonatomic, readonly, nullable) NSNumber *confidence; @property(nonatomic, readonly) CGRect frame; @property(nonatomic, readonly, nullable) NSArray<FIRVisionLatitudeLongitude *> *locations; - (instancetype)init NS_UNAVAILABLE; @end
#FirebaseDevDay On-cloud Usage let landmarkDetector = vision.cloudLandmarkDetector() landmarkDetector.detect(in: visionImage) {
(landmarks, error) in guard let error == nill, let landmarks = landmarks, !landmarks.isEmpty else { return } // do something with your landmarks }
Barcode scanning - On-device
#FirebaseDevDay https://firebase.google.com/docs/ml-kit/label-images
#FirebaseDevDay FIRVisionBarcode | VisionBarcode NS_SWIFT_NAME(VisionBarcode) @interface FIRVisionBarcode : NSObject @property(nonatomic,
readonly) CGRect frame; @property(nonatomic, readonly, nullable) NSString *rawValue; @property(nonatomic, readonly, nullable) NSString *displayValue; @property(nonatomic, readonly) FIRVisionBarcodeFormat format; @property(nonatomic, readonly, nullable) NSArray<NSValue *> *cornerPoints; @property(nonatomic, readonly) FIRVisionBarcodeValueType valueType; @property(nonatomic, readonly, nullable) FIRVisionBarcodeEmail *email; @property(nonatomic, readonly, nullable) FIRVisionBarcodePhone *phone; @property(nonatomic, readonly, nullable) FIRVisionBarcodeSMS *sms; @property(nonatomic, readonly, nullable) FIRVisionBarcodeURLBookmark *URL; @property(nonatomic, readonly, nullable) FIRVisionBarcodeWiFi *wifi; @property(nonatomic, readonly, nullable) FIRVisionBarcodeGeoPoint *geoPoint; @property(nonatomic, readonly, nullable) FIRVisionBarcodeContactInfo *contactInfo; @property(nonatomic, readonly, nullable) FIRVisionBarcodeCalendarEvent *calendarEvent; @property(nonatomic, readonly, nullable) FIRVisionBarcodeDriverLicense *driverLicense; - (instancetype)init NS_UNAVAILABLE; @end
#FirebaseDevDay FIRVisionBarcodeCalendarEvent | VisionBarcodeCalendarEvent NS_SWIFT_NAME(VisionBarcodeCalendarEvent) @interface FIRVisionBarcodeCalendarEvent : NSObject @property(nonatomic,
readonly, nullable) NSString *eventDescription; @property(nonatomic, readonly, nullable) NSString *location; @property(nonatomic, readonly, nullable) NSString *organizer; @property(nonatomic, readonly, nullable) NSString *status; @property(nonatomic, readonly, nullable) NSString *summary; @property(nonatomic, readonly, nullable) NSDate *start; @property(nonatomic, readonly, nullable) NSDate *end; - (instancetype)init NS_UNAVAILABLE; @end
#FirebaseDevDay On-device Usage let barcodeDetector = vision.barcodeDetector() barcodeDetector.detect(in: visionImage) {
(barcodes, error) in guard let error == nill, let barcodes = barcodes, !barcodes.isEmpty else { return } // do something with your barcodes }
Custom model - Tensorflow Lite
#FirebaseDevDay let conditions = ModelDownloadConditions(isWiFiRequired: true, canDownloadInBackground: true) let cloudModelSource
= CloudModelSource( modelName: "my_cloud_model", enableModelUpdates: true, initialConditions: conditions, updateConditions: conditions ) let registrationSuccessful = ModelManager.modelManager().register(cloudModelSource)
Demo
Thank You! #FirebaseDevDay Helpful resources fb.com/FirebaseThailand fb.com/groups/FirebaseDevTH medium.com/FirebaseThailand Kajornsak Peerapathananont