Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DSGAN: Generative Adversarial Training for Dist...
Search
katsutan
May 15, 2019
Technology
0
250
DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
文献紹介
長岡技術科学大学
勝田 哲弘
katsutan
May 15, 2019
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
220
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
200
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
250
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
200
Improving Word Embeddings Using Kernel PCA
katsutan
0
220
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
310
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
Other Decks in Technology
See All in Technology
re:Inventにおける製造業のこれまでとこれから
hamadakoji
0
380
その意思決定、まだ続けるんですか? ~痛みを超えて未来を作る、AI時代の撤退とピボットの技術~
applism118
42
24k
ABEJA FIRST GUIDE for Software Engineers
abeja
0
3.2k
Progressive Deliveryで支える!スケールする衛星コンステレーションの地上システム運用 / Ground Station Operation for Scalable Satellite Constellation by Progressive Delivery
iselegant
1
220
Dify on AWS の選択肢
ysekiy
0
100
機械学習を「社会実装」するということ 2025年冬版 / Social Implementation of Machine Learning November 2025 Version
moepy_stats
4
410
メッセージ駆動が可能にする結合の最適化
j5ik2o
9
1.6k
LINEヤフー バックエンド組織・体制の紹介
lycorptech_jp
PRO
0
850
.NET 10のASP. NET Core注目の新機能
tomokusaba
0
130
ブラウザ拡張のセキュリティの話 / Browser Extension Security
flatt_security
0
130
持続可能なアクセシビリティ開発
azukiazusa1
6
340
TypeScript×CASLでつくるSaaSの認可 / Authz with CASL
saka2jp
2
140
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
940
Making Projects Easy
brettharned
120
6.5k
The Invisible Side of Design
smashingmag
302
51k
Visualization
eitanlees
150
16k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Automating Front-end Workflow
addyosmani
1371
200k
BBQ
matthewcrist
89
9.9k
Faster Mobile Websites
deanohume
310
31k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Transcript
文献紹介: DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 496–505 Melbourne, Australia, July 15 - 20, 2018. 長岡技術科学大学 勝田 哲弘
Abstract • Distant supervisoins ◦ 外部データから効果的にラベルを付けることができる ◦ ラベルにノイズがあることが問題 • DSGAN
◦ Generative Adversarial Networkを用いてデータセットのクリーニング ◦ 生成器の出力を負例として判別器を学習 2
Introduction • Relation extraction ◦ 文中のentityペア間の関係を予測する ◦ 例: The [owl]
held the mouse in its [claw]. ▪ Component-Whole • DSによるデータの生成 ◦ ノイズが多く含まれるため、ノイズ除去が課題 3
Adversarial Learning for Distant Supervision 4
Adversarial Learning for Distant Supervision 1. DSからデータセット作 成 2. True
Positive (high), False Positive (low)をG に抽出させる 5
Adversarial Learning for Distant Supervision 1. DSからデータセット作成 2. True Positive
(high), False Positive (low)をGに抽出させる 3. DはGのTPを負例として学習(GがTPを 抽出する能力が上がるほどDの性能は下 がる) 6
Pre-Training Strategy GANはPre-Trainingされたモデルのほうが収束しやすい DSデータセットからP, NG, NDを用意 • Discriminator: simple CNN (P,
ND) ◦ Accuracyが90%を超えるまで学習 • Generator: simple CNN (P, NG) ◦ Pにオーバーフィットさせる 後に、GにFPの確率を徐々に減少させることを学ばせる。 7
DSGAN algorithm 8
Generator LGは離散サンプリングステップを含むため、勾配に基づくアルゴリズムで直接最適化が できない Policy Gradientに基づいて以下の確率を最大化する 9
Discriminator 以下のクロスエントロピー損失関数を最小化する 各エポックの始めにPre-Trainingされたパラメータをロードする 1エポックでDのパフォーマンスが大きく低下 -> robustなG 10
Optimizing Generator Gの品質をより反映するために、2つの角度から報酬rを定義 1. Dでpositiveと判断されるpositive samplesの信頼度を最大化 2. ND上でDの分類精度を下げる(pの最大化) 11
Cleaning Noisy Dataset with Generator • 1つのrelationに対してGeneratorを1つ作成 • GeneratorでDSデータセットを分類 ◦
正例、負例に分割 12
Experiments • Reidel dataset ◦ distant supervision relation extraction dataset
• Freebase ◦ 数十億のtripleを含む知識ベース • New York Times corpus(NYT) • 評価 ◦ 対応するラベル付きデータセットないためHold-Outで評価 13
Training Process of DSGAN NDでDiscriminatorを評価 • 学習が進むにつれ、 Accuracyが下がる 正負の分類精度を評価 •
それぞれの手法でクリーニ ングしたデータで学習 14
Performance Relation Extractionの精度 15
Conclusion • GANによるDistant Supervisionのノイズを除去する方法を提 案 • タスクに依存しないため、あらゆるDistant Supervisionモデル に適用可 •
New York Time datasetで有意な向上が見られた 16