$30 off During Our Annual Pro Sale. View Details »

CFMLの概要と研究動向 / cfml #1 introduction

CFMLの概要と研究動向 / cfml #1 introduction

CFML勉強会#1の資料です。(https://connpass.com/event/128714/)

Kazuki Taniguchi

July 10, 2019
Tweet

More Decks by Kazuki Taniguchi

Other Decks in Technology

Transcript

  1. CFMLͷ֓ཁͱݚڀಈ޲
    Kazuki Taniguchi
    CFMLษڧձ#1

    View Slide

  2. • ৬ྺ
    • 2014.4-2019.3
    • גࣜձࣾαΠόʔΤʔδΣϯτ ΞυςΫຊ෦ AI Lab
    • 2019.4-
    • ౎಺ͷελʔτΞοϓ
    • ϑϦʔϥϯε(AI/MLͷݚڀ։ൃ)
    • ݚڀ෼໺
    • Pattern Recognition / Image Super Resolution
    • Recommendation / Response Prediction
    • Counterfactual ML
    ࣗݾ঺հ
    ୩ޱ ࿨ً (@kazk1018)

    View Slide

  3. Summary
    • Counterfactual Machine Learningͷ֓ཁ
    • ൓ࣄ࣮͕ੜ͡ΔσʔλΛ༻͍ͨػցֶशͰ͋Δ
    • Interactive LearningͱCausal Inference͕ڞมྔγϑτͷ෦
    ෼໰୊Ͱ͋Δ͜ͱΛઆ໌͢Δ
    • ݚڀಈ޲
    • ޿ࠂͷίϯϖʹΑͬͯσʔληοτ͕ެ։͞Ε͍ͯΔ
    • ֶ֤ձͷWorkshopΛ঺հ͢Δ

    View Slide

  4. Introduction

    View Slide

  5. ໰୊ઃఆ
    ঎඼" ঎඼# ঎඼$
    ෳ਺ͷީิͷத͔Β୯ҰͷΞΠςϜΛϢʔβʹਪન͠ɺ
    Ϣʔβ͔ΒFeedbackΛಘΔ໰୊Λߟ͑Δ
    ঎඼"
    બ୒
    ΠΠω!!

    View Slide

  6. ໰୊ઃఆ
    ͋ΔϢʔβ͕ਪનͨ͠঎඼ΛΫϦοΫ(Feedback)͔ͨ͠
    Ͳ͏͔ͷϩάΛऔಘ͍ͯ͠Δ
    ࣌ࠁ ঎඼ Ϣʔβ ΫϦοΫ
    " 9 /P
    # : /P
    $ 9 :FT
    # ; /P
    $ ; /P
    աڈϩά

    View Slide

  7. ໰୊ઃఆ
    Ϣʔβͷ৘ใ͔Β঎඼Λܾఆ͢Δํࡦ(Policy)ʹ͍ͭͯ

    ҎԼͷํ๏Λߟ͑Δ
    • طଘͷPolicyΛ ͱͨ͠ͱ͖ʹ৽͍͠Policy ΛධՁ͍ͨ͠
    (Evaluation)
    • طଘͷϩάΛར༻ͯ͠৽͍͠ Λֶश͍ͨ͠ (Learning)
    π0
    π
    π

    View Slide

  8. Online Evaluation
    Randomized Controlled Experiment (A/B Testing)
    • ਖ਼֬ͳൺֱΛߦ͏͜ͱ͕Մೳ (Gold Standard)
    • ݁Ռ͕ग़Δ·Ͱʹ͕͔͔࣌ؒΔ
    • ৽͍͠ํࡦͷόά΍UX௿ԼͷϦεΫ͕͋Δ
    • ຊ൪ಋೖͷ։ൃίετ͕େ͖͍
    50% 50%
    π π0

    View Slide

  9. Offline Evaluation
    • طଘͷϩάσʔλ͔Β৽͍͠PolicyΛධՁ͢Δ
    • ࣮ࡍʹ͸ݟ͍ͤͯͳ͍঎඼Λબ୒͢Δ৔߹͸ධՁ͕Ͱ
    ͖ͳ͍
    ࣌ࠁ ঎඼ Ϣʔβ ΫϦοΫ
    " 9 /P
    → BΛਪનͨ͠৔߹͸ʁ
    π(x)
    ΫϦοΫ͞ΕΔ͔Ͳ͏͔͸Θ͔Βͳ͍ (Counterfactual)

    View Slide

  10. Learning
    • Learning͸ධՁ஋͕࠷େͱͳΔํࡦΛݟ͚ͭΔ
    • ධՁ͸ઌड़ͨ͠௨Γਖ਼͘͠ߦ͏͜ͱ͕Ͱ͖ͳ͍

    View Slide

  11. Counterfactual Machine Learning
    ൓ࣄ࣮͕ੜ͡ΔσʔλΛ༻͍ͨػցֶश
    Causal Inference
    Interactive Learning
    Counterfactual Machine Learning
    ※͜ͷൃදͰ͸ڞมྔγϑτͷ؍఺͔Βݟ͍ͯ͘
    (From A Machine Learning Perspective)

    View Slide

  12. Related Works

    View Slide

  13. ڞมྔγϑτ
    • ҎԼͷ৚݅ͷ໰୊Λѻ͏
    p(x) ≠ p′(x)
    p(y|x) = p′(y|x)
    ͸ ʹಠཱʹै͍, ͸ ʹ
    ಠཱʹै͏ͱԾఆ͢Δ
    D = {(xi
    , yi
    )}n
    i=1
    p(x, y) D′ = {x′
    i
    }m
    i=1 ∫
    p′(x, y)dy
    ͜ͷͱ͖, ࣍ͷΑ͏ͳ৚݅Λຬͨ͢ͱ͖Λڞมྔγϑτͱ͍͏

    View Slide

  14. ڞมྔγϑτ
    • ྫ) Ի੠ೝࣝ, ը૾ೝࣝ, etc…

    ɹ : Ի੠σʔλ, : ࿩ऀ, : ࢠڙ, : େਓ

    ɹ : ը૾σʔλ, : ਓ෺, : ࣨ಺, : ԰֎
    x y p(x) p′(x)
    x y p(x) p′(x)
    p(x, y) = p(y|x)p(x) p′(x, y) = p(y|x)p′(x)
    x
    y y′
    x′

    View Slide

  15. ڞมྔγϑτԼͷ༧ଌϞσϧ
    • ͱ Λ༻͍ͯ৽ͨͳೖྗ ʹର͢Δऔಘ Λ
    ༧ଌ͢ΔϞσϧ Λֶश͍ͨ͠
    • ଛࣦؔ਺Λ ͱ͢Δͱ͖ڞมྔγϑτ͸ॏཁ౓ॏΈ෇
    ͖Λ༻͍Δ͜ͱͰղܾ͢Δ͜ͱ͕஌ΒΕ͍ͯΔ
    {(xi
    , yi
    )}n
    i=0
    {x′}m
    i=0
    x′ y

    (x)
    loss(y, fθ
    )
    minθ
    n

    i=0
    w(xi
    )loss(yi
    , fθ
    (xi
    )))
    w(xi
    ) =
    p′(xi
    )
    p(xi
    )

    View Slide

  16. ڞมྔγϑτԼͷ༧ଌϞσϧ
    • ূ໌
    Ep′[loss(y, fθ
    (x))] =
    ∫ ∫
    loss(y, fθ
    (x))p′(x, y)dxdy
    =
    ∫ ∫
    loss(y, fθ
    (x))p′(x)p′(y|x)dxdy
    =
    ∫ ∫
    loss(y, fθ
    (x))p′(x)p′(y|x)
    p(x)
    p(x)
    dxdy
    =
    ∫ ∫
    loss(y, fθ
    (x))p(x)p(y|x)
    p′(x)
    p(x)
    dxdy
    =
    ∫ ∫
    loss(y, fθ
    (x))p(x, y)w(x)dxdy

    n

    i=0
    loss(y, fθ
    (x))w(x)

    View Slide

  17. Interactive Learning
    Context: x
    Policy: π(x)
    Action: a = π(x)
    Reward: δ(x, a)
    System
    a
    User
    $POUFYU "DUJPO 3FXBSE
    5JNF 6TFS9 " /P
    5JNF 6TFS: # /P
    5JNF 6TFS9 $ :FT
    5JNF 6TFS; # /P
    5JNF 6TFS: $ /P
    Logging




    x ∼ P(x)

    View Slide

  18. Interactive Learning
    3FDPNNFOEBUJPO $POUFYUVBM
    CBOEJU
    3FJOGPSDFNFOU
    -FBSOJOH
    $POUFYU
    6TFSBOE*UFN
    *OGPSNBUJPO
    $POUFYU 4UBUF
    "DUJPO *UFN *%
    "SN "DUJPO
    3FXBSE
    $MJDL
    1VSDIBTF
    3FXBSE 3FXBSE
    (ৄ͘͠͸੪౻ͷൃදͰ)

    View Slide

  19. Causal Inference
    • ͋ΔༀΛױऀʹ౤༩͢Δ͔Ͳ͏͔Ͱ3೔ޙʹපؾ͕࣏ͬ
    ͍ͯΔ͔Ͳ͏͔ͷҼՌޮՌΛଌΓ͍ͨ

    ױऀ: x Treatment: t පؾ͕࣏Δ͔Ͳ͏͔: y
    ༀΛ౤༩͍ͯ͠ͳ͍৔߹
    ༀΛ౤༩ͨ͠৔߹

    View Slide

  20. Causal Inference
    • ࣮ࡍʹ؍ଌ͢Δͷ͸ͲͪΒ͔Ұํ͚ͩͰ͋Δ

    ױऀ: x Treatment: t පؾ͕࣏Δ͔Ͳ͏͔: y
    ҼՌਪ࿦ͷࠜຊ໰୊
    ൓ࣄ࣮
    (ৄ͘͠͸҆ҪͷൃදͰ)
    ༀΛ౤༩͍ͯ͠ͳ͍৔߹
    ༀΛ౤༩ͨ͠৔߹

    View Slide

  21. ڞมྔγϑτͱͷؔ܎
    • Interactive Learning
    • ͷੜ੒աఔʹ؍ଌ͕͋Δ͔Ͳ͏͔ͷҧ͍
    • ϢʔβͷinteractionʹΑΔ؍ଌͷ༗ແͰੜ·ΕΔγϑτ
    D
    p(x) = q(o|x)p′(x)
    w(xi
    ) =
    1
    q(o|xi
    )

    View Slide

  22. ڞมྔγϑτͱͷؔ܎
    • Causal Inference
    • ͷੜ੒աఔʹtreatment͕͋Δ͔Ͳ͏͔ͷҧ͍
    • ዞҙతͳtreatmentͷׂ౰ʹΑͬͯੜ·ΕΔγϑτ
    D
    p(x) = q(t|x)P(x)
    p′(x) = q(¬t|x)P(x)
    w(x) =
    q(¬t|x)
    q(t|x)
    (=Propensity Score)

    View Slide

  23. ݚڀಈ޲

    View Slide

  24. • CounterfactualΛѻͬͨػցֶशͷCompetition
    • ੈք࠷େͷDSPͰ͋ΔCriteo͕σʔληοτΛެ։
    • ޿ࠂͷ഑ஔͷ༧ଌͰΫϦοΫͷ࠷େԽ
    • CounterfactualΛߟྀͨ͠ධՁࢦඪΛಋೖ
    Criteo Ad Placement Challenge
    https://www.crowdai.org/challenges/nips-17-workshop-criteo-ad-placement-challenge

    View Slide

  25. Workshops
    • KDD
    • Causal Discovery, 2018/2019
    • Offline and Online Evaluation of Interactive Systems, 2019
    • NIPS
    • From ‘What if?’ To ‘What next?’, 2017
    • Causal Learning, 2018
    • RecSys
    • REVEAL, 2018/2019
    • ICML
    • FAIM’18 Workshop(CausalML)

    View Slide

  26. Summary

    View Slide

  27. Summary
    • Counterfactual Machine Learningͷ֓ཁ
    • ൓ࣄ࣮͕ੜ͡ΔσʔλΛ༻͍ͨػցֶशͰ͋Δ
    • Interactive LearningͱCausal Inference͕ڞมྔγϑτͷ෦
    ෼໰୊Ͱ͋Δ͜ͱΛઆ໌ͨ͠
    • ݚڀಈ޲
    • ޿ࠂͷίϯϖʹΑͬͯσʔληοτ͕ެ։͞Ε͍ͯΔ
    • ֶ֤ձͷWorkshopΛ঺հ͢Δ

    View Slide

  28. References
    1. Home Page of Thorsten Joachims

    http://www.cs.cornell.edu/people/tj/

    2. Counterfactual Reasoning and Learning Systems: The Example of Computational
    Advertising, Leon Bottou, et al…, JMLR 2013

    https://www.microsoft.com/en-us/research/wp-content/uploads/2013/11/
    bottou13a.pdf

    3. ඇఆৗ؀ڥԼͰͷֶशɿڞมྔγϑτదԠɼ ΫϥεόϥϯεมԽదԠɼมԽݕ஌

    http://www.ms.k.u-tokyo.ac.jp/2014/NonstationarityReview-jp.pdf

    4. Offline Evaluation and Optimization for Interactive Systems

    https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/
    tutorial.pdf
    Πϥετ by ͔Θ͍͍ϑϦʔૉࡐू ͍Β͢ͱ΍

    View Slide