Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Unsupervised Domain Adaptation by Backpropagation

Unsupervised Domain Adaptation by Backpropagation

2018/11/22 PaperFriday @ CyberAgent, AI Lab

Kazuki Taniguchi

November 22, 2018
Tweet

More Decks by Kazuki Taniguchi

Other Decks in Research

Transcript

  1. Related works • Subspace alignment • source subspace͔Βtarget subspaceͷม׵MΛֶश͢Δ Fernando,

    Basura, Habrard, Amaury, Sebban, Marc, and Tuytelaars, Tinne. Unsupervised visual domain adaptation using subspace alignment. In ICCV, 2013. Xs , Xt : eigenvectors • simple to setup • for experiments
  2. Related works • Generative adversarial nets (GAN) Goodfellow, Ian, Pouget-Abadie,

    Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative adversarial nets. In NIPS, 2014. D(x) DiscriminatorΛὃͤΔը૾Λ࡞Δ!! ຊ෺ِ͔෺ΛݟۃΊΔͧ!! G(z) ʮຊ෺ͷը૾ʯΛ”ຊ෺”ͱࣝผ ʮِ෺ͷը૾ʯΛ”ِ෺”ͱࣝผ → G͸Dʹؒҧ͑ͯ΄͍͠ → D͸ਖ਼ࣝ͘͠ผͰ͖Ε͹ྑ͍
  3. Related works • Deep Adaptation Network Long, Mingsheng and Wang,

    Jianmin. Learning transferable features with deep adaptation networks. CoRR, abs/1502.02791, 2015. • shallow • optimized by SGD but complex domainͷࣝผΛؒҧ͑ΔΑ͏ʹ͢Δ
  4. Notation yi ∈ Y (Y = {1,2,...,L}) xi ∈ X

    di ∈ {0,1} xi ∼ S(x, y) if di = 0 xi ∼ T(x, y) if di = 1 : Input Data : Domain Label : Source Domain͔Βαϯϓϧ͞Εͨσʔλ : Target Domain͔Βαϯϓϧ͞Εͨσʔλ : Label (yi is known if di = 0 else unknown)
  5. Loss function E(θf , θy , θd ) = ∑

    i=1,..,N Ly (Gy (Gf (xi ; θf ); θy ), yi ) − λ ∑ i=1,..,N Ld (Gd (Gf (xi ; θf ); θd ), di ) Label prediction Domain Invariant Ly : label prediction loss(e . g . multinomial) Ld : domain classification loss(e . g . logistic)
  6. Optimization ( ̂ θf , ̂ θy ) = argminθf

    ,θy E(θf , θy , ̂ θd ) ̂ θd = argmaxθd E( ̂ θf , ̂ θy , θd ) SGD θf ← θf − μ( δLi y δθf − λ δLi d δθf ) θy ← θy − μ( δLi y δθy ) θd ← θd − μ( δLi d δθd )
  7. Optimization θf ← θf − μ( δLi y δθf −

    λ δLi d δθf ) δLi y δθf − λ δLi d δθf Researcher !!
  8. Gradient reversal layer (GRL) Rλ (x) = x δRλ (x)

    δx = − λI ˜ E(θf , θy , θd ) = ∑ i=1,..,N Ly (Gy (Gf (xi ; θf ); θy ), yi ) − λ ∑ i=1,..,N Ld (Gd (Rλ (Gf (xi ; θf )); θd ), di )
  9. Comparisons • Baseline • source domainͷσʔλͰֶश • Subspace Alignment (SA)

    • (Fernando et al., 2013) • Train-on-target • target domainͷσʔλͰֶश (upper bound)