Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Art and Science of Visual Analytics Episode 1
Search
Kazuya Araki
November 25, 2019
Science
1
110
Art and Science of Visual Analytics Episode 1
Kazuya Araki
November 25, 2019
Tweet
Share
More Decks by Kazuya Araki
See All by Kazuya Araki
Tableau事例紹介 / Tableau Case Study of Eureka
kazuya_araki_tokyo
1
540
Tableau事例紹介 & 課題共有
kazuya_araki_tokyo
1
1.3k
統計とは? @ICUHS
kazuya_araki_tokyo
0
260
License Management @BizReach, Inc.
kazuya_araki_tokyo
0
48
Art and Science of Visual Analytics Episode 0
kazuya_araki_tokyo
0
41
Art and Science of Visual Analytics Episode 2
kazuya_araki_tokyo
0
39
Art and Science of Visual Analytics Episode 3
kazuya_araki_tokyo
0
39
Tableau + Pythonとデータのあり方
kazuya_araki_tokyo
2
110
株式会社ビズリーチの紹介@Data Analyst Meetup Tokyo vol.8
kazuya_araki_tokyo
0
73
Other Decks in Science
See All in Science
応用心理学Ⅰテキストマイニング講義資料講義編(2024年度)
satocos135
0
110
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
tagtag
1
120
Analysis-Ready Cloud-Optimized Data for your community and the entire world with Pangeo-Forge
jbusecke
0
130
ベイズ最適化をゼロから
brainpadpr
2
1.1k
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
260
学術講演会中央大学学員会いわき支部
tagtag
0
130
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
30k
Introduction to Image Processing: 2.Frequ
hachama
0
480
サイゼミ用因果推論
lw
1
3.3k
ほたるのひかり/RayTracingCamp10
kugimasa
1
520
Celebrate UTIG: Staff and Student Awards 2024
utig
0
590
Causal discovery based on non-Gaussianity and nonlinearity
sshimizu2006
0
230
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Building Adaptive Systems
keathley
40
2.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Site-Speed That Sticks
csswizardry
4
400
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
It's Worth the Effort
3n
184
28k
Being A Developer After 40
akosma
89
590k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
The Cult of Friendly URLs
andyhume
78
6.2k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
The Language of Interfaces
destraynor
156
24k
Transcript
Art and Science of Visual Analytics Episode 1: Colors
None
Episode 0 Visual Analytics 考えなくても、理解できるように工夫する Preattentive Attributes Visual Analyticsを助ける考え方(= Art
and Science)
今回は、色
Preattentive Attributesの種類 Color - 色 Form - 形 Position -
位置 Movement - 動き
Form Color Position
TL;DR Colors Rules Power of Colors
Hue
Learn the Basics of Color Theory to Know What Looks
Good
None
None
None
記憶の三段階 タイプ 保持期間 容量制限 Sensory memory(即時記憶) 200~500ミリ秒 特徴のあるものだけ。 Short-term memory(短期記憶)
10~15秒 一度に7項目まで。 Long-term memory(長期記憶) 生涯 個人差がある。
None
Best Practices of Hue
メッセージ性さえあれば、色相は少なくても伝わる
色は極限まで少なくする オススメは3色ルール • ベースカラー : 5 • メインカラー : 4 • アクセントカラー:
1 (もしくは4色ルール) • ベースカラー : 4 • メインカラー : 3 • サブカラー : 2 • アクセントカラー: 1 必要な情報を必要な分だけ
https://www.pinterest.com/pin/514465957416721893/
Saturation
https://twitter.com/KaorixTab/status/1106358530401931264
Best Practices of Saturation
強調したい(注目させたい)ときは、原色に近い彩度に オススメは赤系と緑系 • 赤系は危険、注意、アラートなど、ネガティブ要素を示す力がある • 緑系は安心、平常心、達成感など、ポジティブ要素を示す力がある 隠蔽したい(注意を逸らせたい)ときは、彩度を落とす オススメは薄灰色 • 強調と組み合わせると、強調
/ 隠蔽の強さが相対的に増す • 不必要な情報を落とす場合、非常に効果的にはたらく手法 強調と隠蔽
caution!
Color blindness
What Color(s)?
カラーユニバーサルデザイン 色は誰にでも同じに見えるとは限らない 多様な色覚を持つ方に配慮し、情報がなるべく正確に伝わるように利用者目線に 立ってデザインすることが重要。 詳細は、東京都カラーユニバーサルガイドラインを参照。
TL;DR Colors Rules 3色ルール ベース : メイン : アクセント =
5 : 4 : 1 Power of Colors 強調と隠蔽 見る人によって色の世界は異なる
None