Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Art and Science of Visual Analytics Episode 0
Search
Kazuya Araki
November 25, 2019
Science
0
68
Art and Science of Visual Analytics Episode 0
Kazuya Araki
November 25, 2019
Tweet
Share
More Decks by Kazuya Araki
See All by Kazuya Araki
Tableau事例紹介 / Tableau Case Study of Eureka
kazuya_araki_tokyo
1
980
Tableau事例紹介 & 課題共有
kazuya_araki_tokyo
1
1.9k
統計とは? @ICUHS
kazuya_araki_tokyo
0
300
License Management @BizReach, Inc.
kazuya_araki_tokyo
0
80
Art and Science of Visual Analytics Episode 1
kazuya_araki_tokyo
1
130
Art and Science of Visual Analytics Episode 2
kazuya_araki_tokyo
0
69
Art and Science of Visual Analytics Episode 3
kazuya_araki_tokyo
0
58
Tableau + Pythonとデータのあり方
kazuya_araki_tokyo
2
130
株式会社ビズリーチの紹介@Data Analyst Meetup Tokyo vol.8
kazuya_araki_tokyo
0
88
Other Decks in Science
See All in Science
KH Coderチュートリアル(スライド版)
koichih
1
48k
サイゼミ用因果推論
lw
1
7.5k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
150
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
機械学習 - pandas入門
trycycle
PRO
0
330
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.2k
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
280
データマイニング - ノードの中心性
trycycle
PRO
0
280
Symfony Console Facelift
chalasr
2
480
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
820
Lean4による汎化誤差評価の形式化
milano0017
1
340
Transport information Geometry: Current and Future II
lwc2017
0
210
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Designing Experiences People Love
moore
142
24k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
115
20k
YesSQL, Process and Tooling at Scale
rocio
173
14k
What's in a price? How to price your products and services
michaelherold
246
12k
Why Our Code Smells
bkeepers
PRO
340
57k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
189
55k
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
8
910
A better future with KSS
kneath
239
18k
Optimizing for Happiness
mojombo
379
70k
Transcript
Art and Science of Visual Analytics Episode 0: Prologue
None
TL;DR Visual Analytics Preattentive Attributes
ところで、なぜ、データは Visualization(可視化)しないと いけないのでしょうか?
解の一つ
ゲームをしましょう :)
A. 3こ •はいくつありますか?
A. 18こ •はいくつありますか?
8は左から何番目ですか? 1, 1, 2, 3, 5, 8, 11, 13, 21,
34 A. 左から6番目
A. 12こ 8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679
いかがでしたか?
Art and Science of Visual Analytics Episode 0: Prologue
Art and Science of Visual Analytics
What is “Art” ?
What is “Art” ? Not “芸術、美術” , but “技術、技巧” .
Not “感覚的” , but “創造的” . Not “理解し難いもの” , but “理解しやすいもの” .
Art and Science of Visual Analytics
What is “Science” ? 体系化された知識の総称 科学的手法に基く知識、学問 自然科学 科学 - Wikipedia
Art and Science of Visual Analytics
None
どういうことか?
認識する -> 記憶する
記憶の三段階 タイプ 保持期間 容量制限 Sensory memory(即時記憶) 200~500ミリ秒 特徴のあるものだけ。 Short-term memory(短期記憶)
10~15秒 一度に7項目まで。 Long-term memory(長期記憶) 生涯 個人差がある。
いかに無駄を排除し 適切な情報を取捨選択できるか
None
記憶する -> 理解する
cf. 現実にあるグラフ
None
None
ということで、Creatorライセンスを お持ちのみなさま、がんばって きれいなグラフを作りましょう!
Visual Analyticsは、 ネ申エクセルや、クロス集計を 非難しているわけではありません。
ただ、
気をつけないといけない。
Creatorのみなさん、 あなたが作っているものは、 こうなっていませんか?
あるいは、
Viewerのみなさん、 あなたが見ているものは、 こうなっていませんか?
None
None
None
None
男女別人口及び人口性比-全国,都道府県(大正9年~平成27年)
None
伝えたいことは何か?
Best Practices of Visual Analytics
記憶と人間の感覚を有効に利用する 見なくてもよいものを見せない 読まなくてよいものを読ませない 覚えなくてよいものを覚えさせない 考えなくても、理解できる(ように仕向ける)
Don’t think, Feel?
No. Think, and Feel!
Creatorのみなさん、 Viewerが一目で理解できる Vizを作りましょう
Viewerのみなさん、 理解し難いVizを発見したら Creatorにアクションしましょう
Preattentive Attributes
Preattentive = 前注意的な Attributes = 属性
None
Preattentive Attributesの種類 Color - 色 Form - 形 Position -
位置 Movement - 動き 今回は対象外
Form Color Position
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
None
Preattentive Attributesを使うということ 色でわかる 形でわかる 位置でわかる 「考えなくても、理解できる」を助ける
TL;DR Visual Analytics 考えなくても、理解できるように工夫する Preattentive Attributes Visual Analyticsを助ける考え方(= Art and
Science)
None
None
余談ですが
Form Color Position
これってもしかして🙄
None
None
None
None
None