Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Art and Science of Visual Analytics Episode 0
Search
Kazuya Araki
November 25, 2019
Science
0
39
Art and Science of Visual Analytics Episode 0
Kazuya Araki
November 25, 2019
Tweet
Share
More Decks by Kazuya Araki
See All by Kazuya Araki
Tableau事例紹介 / Tableau Case Study of Eureka
kazuya_araki_tokyo
1
480
Tableau事例紹介 & 課題共有
kazuya_araki_tokyo
1
1.3k
統計とは? @ICUHS
kazuya_araki_tokyo
0
240
License Management @BizReach, Inc.
kazuya_araki_tokyo
0
43
Art and Science of Visual Analytics Episode 1
kazuya_araki_tokyo
1
100
Art and Science of Visual Analytics Episode 2
kazuya_araki_tokyo
0
38
Art and Science of Visual Analytics Episode 3
kazuya_araki_tokyo
0
32
Tableau + Pythonとデータのあり方
kazuya_araki_tokyo
2
96
株式会社ビズリーチの紹介@Data Analyst Meetup Tokyo vol.8
kazuya_araki_tokyo
0
70
Other Decks in Science
See All in Science
DEIM2024 チュートリアル ~AWSで生成AIのRAGを使ったチャットボットを作ってみよう~
yamahiro
3
1.4k
Celebrate UTIG: Staff and Student Awards 2024
utig
0
500
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
400
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
100
Inductive-bias Learning: 大規模言語モデルによる予測モデルの生成
fuyu_quant0
0
120
Transformers are Universal in Context Learners
gpeyre
0
620
位相的データ解析とその応用例
brainpadpr
1
720
学術講演会中央大学学員会八王子支部
tagtag
0
240
創薬における機械学習技術について
kanojikajino
13
4.7k
The Incredible Machine: Developer Productivity and the Impact of AI
tomzimmermann
0
420
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
30k
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
300
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7k
Documentation Writing (for coders)
carmenintech
66
4.5k
Writing Fast Ruby
sferik
628
61k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Six Lessons from altMBA
skipperchong
27
3.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.9k
A Tale of Four Properties
chriscoyier
157
23k
Unsuck your backbone
ammeep
669
57k
Transcript
Art and Science of Visual Analytics Episode 0: Prologue
None
TL;DR Visual Analytics Preattentive Attributes
ところで、なぜ、データは Visualization(可視化)しないと いけないのでしょうか?
解の一つ
ゲームをしましょう :)
A. 3こ •はいくつありますか?
A. 18こ •はいくつありますか?
8は左から何番目ですか? 1, 1, 2, 3, 5, 8, 11, 13, 21,
34 A. 左から6番目
A. 12こ 8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679
いかがでしたか?
Art and Science of Visual Analytics Episode 0: Prologue
Art and Science of Visual Analytics
What is “Art” ?
What is “Art” ? Not “芸術、美術” , but “技術、技巧” .
Not “感覚的” , but “創造的” . Not “理解し難いもの” , but “理解しやすいもの” .
Art and Science of Visual Analytics
What is “Science” ? 体系化された知識の総称 科学的手法に基く知識、学問 自然科学 科学 - Wikipedia
Art and Science of Visual Analytics
None
どういうことか?
認識する -> 記憶する
記憶の三段階 タイプ 保持期間 容量制限 Sensory memory(即時記憶) 200~500ミリ秒 特徴のあるものだけ。 Short-term memory(短期記憶)
10~15秒 一度に7項目まで。 Long-term memory(長期記憶) 生涯 個人差がある。
いかに無駄を排除し 適切な情報を取捨選択できるか
None
記憶する -> 理解する
cf. 現実にあるグラフ
None
None
ということで、Creatorライセンスを お持ちのみなさま、がんばって きれいなグラフを作りましょう!
Visual Analyticsは、 ネ申エクセルや、クロス集計を 非難しているわけではありません。
ただ、
気をつけないといけない。
Creatorのみなさん、 あなたが作っているものは、 こうなっていませんか?
あるいは、
Viewerのみなさん、 あなたが見ているものは、 こうなっていませんか?
None
None
None
None
男女別人口及び人口性比-全国,都道府県(大正9年~平成27年)
None
伝えたいことは何か?
Best Practices of Visual Analytics
記憶と人間の感覚を有効に利用する 見なくてもよいものを見せない 読まなくてよいものを読ませない 覚えなくてよいものを覚えさせない 考えなくても、理解できる(ように仕向ける)
Don’t think, Feel?
No. Think, and Feel!
Creatorのみなさん、 Viewerが一目で理解できる Vizを作りましょう
Viewerのみなさん、 理解し難いVizを発見したら Creatorにアクションしましょう
Preattentive Attributes
Preattentive = 前注意的な Attributes = 属性
None
Preattentive Attributesの種類 Color - 色 Form - 形 Position -
位置 Movement - 動き 今回は対象外
Form Color Position
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
None
Preattentive Attributesを使うということ 色でわかる 形でわかる 位置でわかる 「考えなくても、理解できる」を助ける
TL;DR Visual Analytics 考えなくても、理解できるように工夫する Preattentive Attributes Visual Analyticsを助ける考え方(= Art and
Science)
None
None
余談ですが
Form Color Position
これってもしかして🙄
None
None
None
None
None