Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Art and Science of Visual Analytics Episode 0
Search
Kazuya Araki
November 25, 2019
Science
0
64
Art and Science of Visual Analytics Episode 0
Kazuya Araki
November 25, 2019
Tweet
Share
More Decks by Kazuya Araki
See All by Kazuya Araki
Tableau事例紹介 / Tableau Case Study of Eureka
kazuya_araki_tokyo
1
930
Tableau事例紹介 & 課題共有
kazuya_araki_tokyo
1
1.8k
統計とは? @ICUHS
kazuya_araki_tokyo
0
280
License Management @BizReach, Inc.
kazuya_araki_tokyo
0
70
Art and Science of Visual Analytics Episode 1
kazuya_araki_tokyo
1
130
Art and Science of Visual Analytics Episode 2
kazuya_araki_tokyo
0
62
Art and Science of Visual Analytics Episode 3
kazuya_araki_tokyo
0
57
Tableau + Pythonとデータのあり方
kazuya_araki_tokyo
2
120
株式会社ビズリーチの紹介@Data Analyst Meetup Tokyo vol.8
kazuya_araki_tokyo
0
85
Other Decks in Science
See All in Science
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
700
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
760
Explanatory material
yuki1986
0
330
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
690
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
200
創薬における機械学習技術について
kanojikajino
16
5.3k
Machine Learning for Materials (Challenge)
aronwalsh
0
300
Introd_Img_Process_2_Frequ
hachama
0
570
How To Buy, Verified Venmo Accounts in 2025 This year
usaallshop68
2
140
IWASAKI Hideo
genomethica
0
110
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
420
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
190
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Testing 201, or: Great Expectations
jmmastey
43
7.6k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
A designer walks into a library…
pauljervisheath
207
24k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
How to Ace a Technical Interview
jacobian
278
23k
Unsuck your backbone
ammeep
671
58k
Faster Mobile Websites
deanohume
307
31k
Transcript
Art and Science of Visual Analytics Episode 0: Prologue
None
TL;DR Visual Analytics Preattentive Attributes
ところで、なぜ、データは Visualization(可視化)しないと いけないのでしょうか?
解の一つ
ゲームをしましょう :)
A. 3こ •はいくつありますか?
A. 18こ •はいくつありますか?
8は左から何番目ですか? 1, 1, 2, 3, 5, 8, 11, 13, 21,
34 A. 左から6番目
A. 12こ 8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679
いかがでしたか?
Art and Science of Visual Analytics Episode 0: Prologue
Art and Science of Visual Analytics
What is “Art” ?
What is “Art” ? Not “芸術、美術” , but “技術、技巧” .
Not “感覚的” , but “創造的” . Not “理解し難いもの” , but “理解しやすいもの” .
Art and Science of Visual Analytics
What is “Science” ? 体系化された知識の総称 科学的手法に基く知識、学問 自然科学 科学 - Wikipedia
Art and Science of Visual Analytics
None
どういうことか?
認識する -> 記憶する
記憶の三段階 タイプ 保持期間 容量制限 Sensory memory(即時記憶) 200~500ミリ秒 特徴のあるものだけ。 Short-term memory(短期記憶)
10~15秒 一度に7項目まで。 Long-term memory(長期記憶) 生涯 個人差がある。
いかに無駄を排除し 適切な情報を取捨選択できるか
None
記憶する -> 理解する
cf. 現実にあるグラフ
None
None
ということで、Creatorライセンスを お持ちのみなさま、がんばって きれいなグラフを作りましょう!
Visual Analyticsは、 ネ申エクセルや、クロス集計を 非難しているわけではありません。
ただ、
気をつけないといけない。
Creatorのみなさん、 あなたが作っているものは、 こうなっていませんか?
あるいは、
Viewerのみなさん、 あなたが見ているものは、 こうなっていませんか?
None
None
None
None
男女別人口及び人口性比-全国,都道府県(大正9年~平成27年)
None
伝えたいことは何か?
Best Practices of Visual Analytics
記憶と人間の感覚を有効に利用する 見なくてもよいものを見せない 読まなくてよいものを読ませない 覚えなくてよいものを覚えさせない 考えなくても、理解できる(ように仕向ける)
Don’t think, Feel?
No. Think, and Feel!
Creatorのみなさん、 Viewerが一目で理解できる Vizを作りましょう
Viewerのみなさん、 理解し難いVizを発見したら Creatorにアクションしましょう
Preattentive Attributes
Preattentive = 前注意的な Attributes = 属性
None
Preattentive Attributesの種類 Color - 色 Form - 形 Position -
位置 Movement - 動き 今回は対象外
Form Color Position
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
8はいくつありますか? 3.14159265358979323846 3.26433832795028841971 3.69399375105820974944 3.59230781640628620899 3.86280348253421170679 3.82148086513282306647
None
Preattentive Attributesを使うということ 色でわかる 形でわかる 位置でわかる 「考えなくても、理解できる」を助ける
TL;DR Visual Analytics 考えなくても、理解できるように工夫する Preattentive Attributes Visual Analyticsを助ける考え方(= Art and
Science)
None
None
余談ですが
Form Color Position
これってもしかして🙄
None
None
None
None
None