Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Art and Science of Visual Analytics Episode 2
Search
Kazuya Araki
November 25, 2019
Science
0
66
Art and Science of Visual Analytics Episode 2
Kazuya Araki
November 25, 2019
Tweet
Share
More Decks by Kazuya Araki
See All by Kazuya Araki
Tableau事例紹介 / Tableau Case Study of Eureka
kazuya_araki_tokyo
1
960
Tableau事例紹介 & 課題共有
kazuya_araki_tokyo
1
1.8k
統計とは? @ICUHS
kazuya_araki_tokyo
0
290
License Management @BizReach, Inc.
kazuya_araki_tokyo
0
78
Art and Science of Visual Analytics Episode 0
kazuya_araki_tokyo
0
66
Art and Science of Visual Analytics Episode 1
kazuya_araki_tokyo
1
130
Art and Science of Visual Analytics Episode 3
kazuya_araki_tokyo
0
58
Tableau + Pythonとデータのあり方
kazuya_araki_tokyo
2
130
株式会社ビズリーチの紹介@Data Analyst Meetup Tokyo vol.8
kazuya_araki_tokyo
0
86
Other Decks in Science
See All in Science
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
130
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
160
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
300
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
190
Accelerated Computing for Climate forecast
inureyes
PRO
0
120
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
980
Hakonwa-Quaternion
hiranabe
1
120
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.5k
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
190
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
840
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.7k
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
610
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Building Applications with DynamoDB
mza
96
6.6k
Producing Creativity
orderedlist
PRO
347
40k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Side Projects
sachag
455
43k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
500
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
790
Automating Front-end Workflow
addyosmani
1370
200k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
185
54k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Transcript
Art and Science of Visual Analytics Episode 2: Forms and
Positions
None
Episode 0 Visual Analytics 考えなくても、理解できるように工夫する Preattentive Attributes Visual Analyticsを助ける考え方(= Art
and Science)
今回は、形と位置
Preattentive Attributesの種類 Color - 色 Form - 形 Position -
位置 Movement - 動き
Form Color Position
TL;DR (Visual) Illusion Shapes and Position
ゲームをしましょう :)
どちらが大きい?
どちらが大きい?
傾きが大きいのは?
傾きが大きいのは?
人間の視覚を騙すのはとても簡単
None
None
None
以上を頭の片隅に
記憶の三段階 タイプ 保持期間 容量制限 Sensory memory(即時記憶) 200~500ミリ秒 特徴のあるものだけ。 Short-term memory(短期記憶)
10~15秒 一度に7項目まで。 Long-term memory(長期記憶) 生涯 個人差がある。
Best Practices of Shapes and Position
組み合わせの法則
向き + 位置 = 折れ線グラフ
長さ + 幅 + 位置 = 棒グラフ
形状 + 位置 + グループ = 散布図
複雑そうなグラフも紐解くと組み合わせ
長さ + 幅 + 位置 + サイズ = ウォーターフォールチャート
サイズ + 位置 + グループ = バブルチャート
サイズ + グループ = パックバブルチャート
空間を最大限活用する
サイズ + 位置 + 囲い = ツリーマップ
位置(緯度、経度) + 囲い = 地図
色も組み合わせてみると、さらに強力に
長さ + 幅 + 位置 + 囲い + 色相 =
積み上げ棒グラフ
向き + 位置 + 囲い + 色相 = 面グラフ
サイズ + 向き(角度) + 囲い + 色相 = 円グラフ
位置 + 囲い + 彩度 = ヒートマップ
すべてのグラフは Preattentive Attributesから できている
TL;DR (Visual) Illusion 人間の視覚情報は容易に騙される(錯覚、錯視) 視覚を悪用しないように注意する Shapes and Position すべてのグラフを構成している要素はPreattentive Attributesである
色と組み合わせると強力な表現力となる
None