Upgrade to Pro — share decks privately, control downloads, hide ads and more …

pythonで0を作ってみんなも神になろう

國友大地
September 07, 2023

 pythonで0を作ってみんなも神になろう

pythonで0、自然数、整数、有理数を作り、四則演算を作ります。

國友大地

September 07, 2023
Tweet

Other Decks in Programming

Transcript

  1. 自然数を作ろう 実は two + [two] = [zero, one] + [two]

    = [zero, one, two] = threeとなります。 以降はそうやって自然数を作りましょう。 zero = [] one = [zero] # = [[]] two = [zero, one] # = [[], [[]]] three = two + [two] # = [zero, one, two] ※0は大学数学においては自然数に含む
  2. 1を足す関数を作ろう さっき言ったようにこうやって x + 1を計算できます。 # 1を足す関数 後者関数 successor function

    def suc(x: Natural) -> Natural: """ x + 1 を計算する""" return x + [x] ※Natural型 = list型
  3. 大小関係を作ろう なんと大小関係が1行で判定できる。最高! def is_bigger(x: Natural, y: Natural) -> bool: """

    x < y かを判定する""" return x in y 今できること • 1を足す • 1を引く
  4. 足し算を作ろう 1を足すことと1を引くことしかできず、for文も禁止なので再帰で書きます。 x + 0 = x、x+y = (x+1)+(y-1)。それはそう。 def

    plus(x: Natural, y: Natural) -> Natural: if y == zero: return x # x + 0 = x else: return plus(suc(x), pre(y)) # x+y = (x+1)+(y-1) 今できること • 1を足す • 1を引く • 大小関係
  5. 掛け算を作ろう 足し算を繰り返して再帰で書きます。 x * 0 = 0、x * y =

    x * (y-1) + x。それはそう。 def mul(x: Natural, y: Natural) -> Natural: if y == zero: return zero # x * 0 = 0 else: # x * y = x * (y-1) + x return plus(mul(x, pre(y)), x) 今できること • 1を足す • 1を引く • 大小関係 • 足し算
  6. 整数を作ろう a - b = c - d の時、 a

    + d = c + b です。 整数を自然数の2つ組で表現しましょう! 自然数a,bを使って整数 a-bを(a, b)と表現します! (1,4) = -3 , (0,0) = 0, (20, 21) = -1, (0,3) = -3 です! Integer = tuple[Natural, Natural] 今できること • 1を足す • 1を引く • 大小関係 • 足し算 • 掛け算 ※int型とInteger型は異なる
  7. 整数を作ろう a - b = c - d の時、 a

    + d = c + b です。 整数を自然数の2つ組で表現しましょう! 自然数a,bを使って整数 a-bを(a, b)と表現します! (1,4) = -3 , (0,0) = 0, (20, 21) = -1, (0,3) = -3 です! (1,4) = (0,3) になってるけど大丈夫? Integer = tuple[Natural, Natural] 今できること • 1を足す • 1を引く • 大小関係 • 足し算 • 掛け算 ※int型とInteger型は異なる
  8. 整数の「=」を作ろう 整数が等しいかを判定するためにInteger型の「=」を作る。 a-b = c-d なら a+d = b+c なので簡単

    x[0]やx[1]はNatural型なので足し算できる! def eq_i(x: Integer, y: Integer) -> bool: """x[0] - x[1] == y[0] - y[1] かを判定する""" return plus(x[0], y[1]) == plus(y[0], x[1]) 今できること • 自然数 ◦ 1を足す ◦ 1を引く ◦ 大小関係 ◦ 足し算 ◦ 掛け算 ※Integerを型ではなくクラスで表現すれば添字 [0][1]は使わずに済むので、ここでの int型0,1は許容
  9. 整数の足し算を作ろう (a-b) + (c-d) = (a+c) - (b+d)なので自然数の足し算だけで作れる! def plus_i(x:

    Integer, y: Integer) -> Integer: """ x+y を計算する""" # a-b + c-d = (a+c) - (b+d) return (plus(x[0], y[0]), plus(x[1], y[1])) 今できること • 自然数 ◦ 1を足す ◦ 1を引く ◦ 大小関係 ◦ 足し算 ◦ 掛け算 • 整数 ◦ 「=」
  10. 整数の単項マイナスを作ろう a-b = b-aなのでそのまま def neg_i(x: Integer) -> Integer: """

    -x を計算する""" return (x[1], x[0]) 今できること • 自然数 ◦ 1を足す ◦ 1を引く ◦ 大小関係 ◦ 足し算 ◦ 掛け算 • 整数 ◦ 「=」 ◦ 足し算
  11. 整数の引き算を作ろう x - y = x + (-y)より作れる。 def minus_i(x:

    Integer, y: Integer) -> Integer: """ x-y を計算する""" return plus_i(x, neg_i(y)) # x-y = x + (-y) 今できること • 自然数 ◦ 1を足す ◦ 1を引く ◦ 大小関係 ◦ 足し算 ◦ 掛け算 • 整数 ◦ 「=」 ◦ 足し算 ◦ 正負逆転
  12. 整数の掛け算を作ろう テキトーにやれば面倒だが出来る。 (a-b)*(c-d)=(a*c-b*c) - (a*c - b*d) def mul_i(x: Integer,

    y: Integer) -> Integer: x_mul_y0: Integer = (mul(x[0],y[0]), mul(x[1],y[0])) x_mul_y1: Integer = (mul(x[0],y[1]), mul(x[1],y[1])) return minus_i(x_mul_y0, x_mul_y1) 今できること • 自然数 ◦ 1を足す ◦ 1を引く ◦ 大小関係 ◦ 足し算 ◦ 掛け算 • 整数 ◦ 「=」 ◦ 足し算 ◦ 正負逆転 ◦ 引き算
  13. 整数と引き算が作れた 今できること • 整数 ◦ 「=」 ◦ 足し算 ◦ 正負逆転

    ◦ 引き算 ◦ 掛け算 もう自然数は整数の下位互換なので要りません やったー!!
  14. 割り算を作りたい x / y = z x = z *

    y 今できること • 整数 ◦ 「=」 ◦ 足し算 ◦ 正負逆転 ◦ 引き算 ◦ 掛け算 ←!!!!!!
  15. 有理数を作ろう なんと!有理数は2つの整数から作ることが出来ます!知ってた。 有理数 x / y を(x, y) と表します! Rational

    = tuple[Integer, Integer] 今できること • 整数 ◦ 「=」 ◦ 足し算 ◦ 正負逆転 ◦ 引き算 ◦ 掛け算
  16. 有理数の「=」を作ろう a / b = c / d ならば a

    * d = c * bなのでこうなります。 def eq_r(x: Rational, y: Rational) -> bool: return eq_i( mul_i(x[0], y[1]), mul_i(x[1], x[0]) ) 今できること • 整数 ◦ 「=」 ◦ 足し算 ◦ 正負逆転 ◦ 引き算 ◦ 掛け算
  17. 有理数の掛け算を作ろう 有理数はみなさん御存知の通り掛け算が一番楽なので作ります。 (a / b) * (c / d) =

    (a*c) / (b*d) def mul_r(x: Rational, y: Rational) -> Rational: """ x*y を計算する""" return (mul_i(x[0], y[0]), mul_i(x[1], y[1])) 今できること • 整数 ◦ 「=」 ◦ 足し算 ◦ 正負逆転 ◦ 引き算 ◦ 掛け算 • 有理数 ◦ 「=」
  18. 有理数の割り算を作ろう 有理数はみなさん御存知の通り割り算が二番楽(?)なので作ります。 (a / b) / (c / d) =

    (a*d) / (b*c) def div_r(x: Rational, y: Rational) -> Rational: """ x/y を計算する""" return (mul_i(x[0], y[1]), mul_i(x[1], y[0])) 今できること • 整数 ◦ 「=」 ◦ 足し算 ◦ 正負逆転 ◦ 引き算 ◦ 掛け算 • 有理数 ◦ 「=」 ◦ 掛け算
  19. 有理数の単項マイナスを作ろう 分数をマイナスにするのは分子にマイナスつけるだけです。 def neg_r(x: Rational) -> Rational: """ -x を計算する"""

    return (neg_i(x[0]), x[1]) 今できること • 整数 ◦ 「=」 ◦ 足し算 ◦ 正負逆転 ◦ 引き算 ◦ 掛け算 • 有理数 ◦ 「=」 ◦ 掛け算 ◦ 割り算
  20. 有理数の足し算を作ろう なんかごちゃごちゃ計算したらできます。 読まなくていいです。 def plus_r(x: Rational, y: Rational) -> Rational:

    numerator = plus_i(mul_i(x[0], y[1]), mul_i(x[1], y[0])) denominator = mul_i(x[1], y[1]) return (numerator, denominator) 今できること • 整数 ◦ 「=」 ◦ 足し算 ◦ 正負逆転 ◦ 引き算 ◦ 掛け算 • 有理数 ◦ 「=」 ◦ 掛け算 ◦ 割り算 ◦ 正負逆転
  21. 有理数の引き算を作ろう なんかごちゃごちゃ計算したらできます2。 読まなくていいです2。 …と思いきや足し算と単項マイナスがあるので楽です。 今できること • 整数 ◦ 「=」 ◦

    足し算 ◦ 正負逆転 ◦ 引き算 ◦ 掛け算 • 有理数 ◦ 「=」 ◦ 掛け算 ◦ 割り算 ◦ 正負逆転 ◦ 足し算 def minus_r(x: Rational, y: Rational) -> Rational: """ x-y を計算する""" return plus_r(x, neg_r(y))