Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal club] Scalable Diffusion Models with T...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
July 22, 2024
Technology
0
130
[Journal club] Scalable Diffusion Models with Transformers
Semantic Machine Intelligence Lab., Keio Univ.
PRO
July 22, 2024
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
Multimodal AI Driving Solutions to Societal Challenges
keio_smilab
PRO
1
140
[Journal club] Re-thinking Temporal Search for Long-Form Video Understanding
keio_smilab
PRO
0
23
[Journal club] EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations
keio_smilab
PRO
0
62
[Journal club] FreeTimeGS: Free Gaussian Primitives at Anytime and Anywhere for Dynamic Scene Reconstruction
keio_smilab
PRO
0
86
[Journal club] Thinking in Space: How Multimodal Large Language Models See, Remember, and Recall Spaces
keio_smilab
PRO
0
130
[Journal club] GraphEQA: Using 3D Semantic Scene Graphs for Real-time Embodied Question Answering
keio_smilab
PRO
0
81
[RSJ25] Feasible RAG: Hierarchical Multimodal Retrieval with Feasibility-Aware Embodied Memory for Mobile Manipulation
keio_smilab
PRO
0
180
[RSJ25] LILAC: Language‑Conditioned Object‑Centric Optical Flow for Open‑Loop Trajectory Generation
keio_smilab
PRO
0
140
[RSJ25] Multilingual Scene Text-Aware Multimodal Retrieval for Everyday Objects Based on Deep State Space Models
keio_smilab
PRO
0
110
Other Decks in Technology
See All in Technology
日本Rubyの会の構造と実行とあと何か / hokurikurk01
takahashim
4
810
世界最速級 memcached 互換サーバー作った
yasukata
0
300
Uncertainty in the LLM era - Science, more than scale
gaelvaroquaux
0
730
生成AI時代の自動E2Eテスト運用とPlaywright実践知_引持力哉
legalontechnologies
PRO
0
190
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
200
AI活用によるPRレビュー改善の歩み ― 社内全体に広がる学びと実践
lycorptech_jp
PRO
1
160
pmconf2025 - データを活用し「価値」へ繋げる
glorypulse
0
640
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
380
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
120
手動から自動へ、そしてその先へ
moritamasami
0
260
Playwright x GitHub Actionsで実現する「レビューしやすい」E2Eテストレポート
kinosuke01
0
240
セキュリティAIエージェントの現在と未来 / PSS #2 Takumi Session
flatt_security
3
1.5k
Featured
See All Featured
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
We Have a Design System, Now What?
morganepeng
54
7.9k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Code Review Best Practice
trishagee
73
19k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
380
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Transcript
4DBMBCMF%JGGVTJPO.PEFMTXJUI 5SBOTGPSNFST ܚጯٛक़େֶ ਿӜ໌ݚڀࣨ#ീౡେ 8JMMJBN1FFCMFT 4BJOJOH9JF 6$#FSLFMFZ /FX:PSL6OJWFSTJUZ *$$7 8JMMJBN1FFCMFT
4BJOJOH9JFl4DBMBCMF%JGGVTJPO.PEFMTXJUI5SBOTGPSNFSTzJO*$$7 QQ
എܠɿ֦ࢄϞσϧʹΑΔಈը૾ੜ FH 4PSB ͷൃల IUUQTXXXZPVUVCFDPNXBUDI W),Z%"1/@
ؔ࿈ݚڀɿ֦ࢄϞσϧͷόοΫϘʔϯͱͯ͠6/FU͕ଟ༻ • 6/FUͷ.VMUJTDBMFTLJQDPOOFDUJPOTˠ ෆཁͳܭࢉࢿݯͷ༻ 手法 概要 DALL-E 2 [Ramesh+,
22] CLIPを用いてテキストと画像のAlignmentを行う Stable Diffusion [Rombach+, CVPR22] 潜在拡散モデル 6/FU<3POOFCFSHFS .*$$"*> 4UBCMF%JGGVTJPO<3PNCBDI $713>
ఏҊख๏ɿ%JGGVTJPO5SBOTGPSNFS %J5 • જࡏ֦ࢄϞσϧ -%. <3PNCBDI $713>Λϕʔεʹߏங • 7JTJPO5SBOTGPSNFS 7J5
<%PTPWJUTLJZ *$-3>ػߏΛಋೖ • $POEJUJPOJOHʹΑΔ݅ใͷೖྗ
ఏҊख๏ ɿજࡏ֦ࢄϞσϧͱֶͯ͠शͤ͞Δ • ߴ࣍ݩͷըૉۭؒͰ֦ࢄϞσϧΛֶश ͤ͞Δ͜ͱܭࢉྔతʹࠔ • -%.ͱֶͯ͠शͤ͞Δ͜ͱͰ ܭࢉྔΛݮ
• ըૉۭؒͷ֦ࢄϞσϧͰ͋Δ "%.<%IBSJXBM /FVS*14> ͷͷͷ(GMPQTͰֶशՄೳ
ఏҊख๏ ɿೖྗϊΠζΛQBUDIʹղ • "VUPFODPEFS͔ΒಘΒΕͨ /PJTFE-BUFOU YY Λ 7J5ͱಉ༷ʹE࣍ݩͷτʔΫϯ5ʹม •
1BUDIαΠζQΛʹ͢Δͱ5ഒ ʹͳΓUSBOTGPSNFSͷ (GMPQTগͳ͘ͱഒҎ্
ఏҊख๏ ɿ͖݅ೖྗ $POEJUJPOJOH ͷॲཧ • ͖֦݅ࢄϞσϧͰϊΠζΛؚΉը૾ͱͱʹՃใ͕Ճ͑ΒΕΔ FH UJNFTUFQɼΫϥεϥϕϧɼࣗવݴޠ FUD
• ຊݚڀͰ͜ΕΒͷ͖݅ೖྗΛॲཧ͢ΔͨΊʹҎԼͷͭͷҟͳΔઃܭΛఏҊ • *ODPOUFYUDPOEJUJPOJOH • $SPTT"UUFOUJPOCMPDL • "EBQUJWFMBZFSOPSN BEB-/ CMPDL • BEB-/;FSPCMPDL
ఏҊख๏ ɿBEB-/;FSPCMPDL • 7J5ͷTFMGBUUFOUJPOCMPDLʹରͯ͠"EB-/ػߏΛಋೖ • "EB-/ͷεέʔϧ ͓Αͼ ࠩଓͷલͷεέʔϧ
Λύϥϝʔλͱͯ͠Ճ ˠ݅ใΛը૾ʹΑΓڧ͘ө • "EB-/;FSPCMPDLͰͦΕΒΛθϩʹॳظԽ ˠֶशͷॳظஈ֊߃ؔʹ͍ۙಇ͖ ˠ ֶशͷ҆ఆԽ
࣮ݧઃఆ • σʔληοτ • $MBTT$POEJUJPOBM*NBHF/FUY Y<%FOH $713> • ΞʔΩςΫνϟ
• 7J5ͱಉ༷ʹͭͷϞσϧͷେ͖͞ 4 # - 9- Λ༻ҙ • QBUDITJ[FQ • %%1.TBNQMJOHTUFQT • ධՁई • '*% T'*% *4 1SFDJTJPO 3FDBMM • (GMPQT • ֶश • 516WQPE #BUDITJ[F
ఆྔత݁Ռɿ6/FUϕʔεͷख๏Λ্ճͬͨ
ఆੑత݁Ռ • 1BUDITJ[FΛখ͘͞ɼϞσϧΛେ͖͘͢ΔͱΑΓࣗવͳը૾͕ग़ྗ͞ΕΔ ˠ%J5Ͱ(GMPQT͕େ͖͍΄Ͳग़ྗը૾ͷ্࣭͕͕Δ
ࢼ͓ΑͼΤϥʔੳ ఆੑత݁Ռ ɿࣦഊྫ • ಛఆͷMBCFMʹରͯ͠ෆࣗવͳը૾͕ੜ͞ΕΔ • ྫɿJOQVUMBCFM UPZQPPEMF %%1.TBNQMJOHTUFQ
• ϥϕϧʹΑͬͯTUFQͰੜը૾͕ෆ҆ఆˠ ਪ࣌ͷTUFQΛಈతʹมߋ
ॴײ • 4USFOHUI • ֦ࢄϞσϧʹUSBOTGPSNFSΛಋೖ • ܭࢉࢿݯͱग़ྗը૾ͷ࣭ʹ͍ͭͯͷߟ • 8FBLOFTT
• ͕ࣜগͳ͔ͬͨ • Τϥʔੳ͕ͳ͍
·ͱΊ • എܠ • ֦ࢄϞσϧʹΑΔಈը૾ੜ FH 4PSB ͷൃల • ֦ࢄϞσϧʹ͓͚ΔUSBOTGPSNFSͷར༻͕গͳ͍
• ఏҊख๏ • USBOTGPSNFSϕʔεͷ֦ࢄϞσϧͰ͋Δ%JGGVTJPO5SBOTGPSNFS %J5 ΛఏҊ • ݁Ռ • %J5εέʔϥϏϦςΟ͕ߴ͘ɼ(GMPQT͕େ͖͍΄Ͳ'*%͕Լ ˠ ܭࢉࢿݯͱग़ྗը૾ͷ࣭ʹڧ͍૬ؔؔ • %J59-Ϟσϧ͕ɼ$MBTT$POEJUJPOBM*NBHF/FUʹ͓͍ͯ ैདྷͷ6/FUϕʔεͷ֦ࢄϞσϧΛ্ճͬͨ
"QQFOEJYɿ%FOPJTJOH%JGGVTJPO1SPCBCJMJTUJD.PEFM %%1. ֶश
"QQFOEJYɿ$MBTTJGJFSGSFFHVJEBODF • ͖֦݅ࢄϞσϧͰΫϥεϥϕϧΛϥϯμϜʹυϩοϓ ˠ αϯϓϦϯάͷਫ਼Λ্ • #BZFTͷఆཧΑΓ • ֦ࢄϞσϧͷग़ྗΛείΞͱͯ͠ղऍ͢Δͱਪఆ͢ΔϊΠζҎԼͷΑ͏ʹͳΔ
TɿΨΠμϯεεέʔϧ
"QQFOEJYɿ*ODPOUFYUDPOEJUJPOJOH • $POEJUJPOJOHͰ݅ͱͯ͠ೖྗ͞ΕͨτʔΫϯΛ ը૾τʔΫϯͷઌ಄ʹՃ • ͜ΕΒͷτʔΫϯը૾τʔΫϯͱಉ༷ʹѻΘΕɺ 7J5ʣʹ͓͚ΔDMTτʔΫϯͱࣅׂͨΛ࣋ͭ
"QQFOEJYɿ$SPTT"UUFOUJPOCMPDL • 4FMG"UUFOUJPOϒϩοΫͷޙʹ$SPTT"UUFOUJPOΛ Ճͨ͠ઃܭ • <7BTXBOJ /*14>-%.ͱྨࣅͨ͠ΞʔΩςΫνϟ
"QQFOEJYɿ%J5CMPDLEFTJHO • %J59-Ϟσϧʹ͓͍ͯBEB-/;FSPΛ༻͍ͨ ߹͕࠷গͳ͍ܭࢉࢿݯͰ࠷ྑ͍ '*%,είΞΛୡ
"QQFOEJYɿ7JTJPO5SBOTGPSNFS <%PTPWJUTLJZ *$-3>
"QQFOEJYɿ*ODFQUJPO4DPSF *4 • *NBHF/FUͰࣄલֶशࡁΈͷ*ODFQUJPOOFUXPSLΛ༻͍ͨධՁࢦඪ • *ODFQUJPOOFUXPSL͕ࣝผ͘͢͠ɼࣝผ͞ΕΔϥϕϧͷଟ༷ੑ͕͋Δ΄Ͳ େ͖͘ͳΔࢦඪ <4[FHFEZ $713>
"QQFOEJYɿ'SFDIFU*ODFQUJPO%JTUBODF '*% • *NBHF/FUͰࣄલֶशࡁΈͷ*ODFQUJPOOFUXPSLΛ༻͍ͨධՁࢦඪ • ੜ͞Εͨը૾ͷಛ͕(5ը૾ͷಛͱͲͷఔ ࣅ͍ͯΔ͔ΛධՁ͢Δࢦඪ • '*%͕খ͍͞΄Ͳੜ͞Εͨը૾ͷ࣭͕(5ը૾ʹ͍ۙͱߟ͑ΒΕΔ
"QQFOEJYɿ1SFDJTJPO3FDBMM • *NBHF/FUͰࣄલֶशࡁΈͷ7((<4JNPOZBO *$-3>Λ༻͍ͯ ಛϕΫτϧू߹ΛಘΔ
"QQFOEJYɿ(GMPQT • 'MPQTɿුಈখԋࢉͷճ • (GMPQT 'MPQT • ը૾ੜλεΫͰΞʔΩςΫνϟͷෳࡶ͞ΛධՁ͢ΔࡍύϥϝʔλΛ༻͍Δͷ ͕Ұൠత
• ੑೳʹେ͖͘Өڹ͢Δը૾ղ૾ΛҰߟྀ͍ͯ͠ͳ͍ • Ϟσϧͷෳࡶ͞Λද͢ࢦඪͱͯ͠ෆेͳ߹͕͋Δ
"QQFOEJYɿఆྔత݁Ռ
"QQFOEJY(GMPQTͱ'*%ͷ૬ؔ • ΑΓଟ͘ͷ(GMPQTΛͭϞσϧ'*%͕͘ͳΔ
"QQFOEJYɿϞσϧαΠζͱύοναΠζͷݕ౼