$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LLMをやめよう / stop using LLM
Search
Naoki Kishida
July 05, 2023
Programming
11
13k
LLMをやめよう / stop using LLM
2023年7月5日に開催されたLLM Meetup Tokyo #3でのLT資料です
https://lu.ma/llm-meetup-tokyo-3
Naoki Kishida
July 05, 2023
Tweet
Share
More Decks by Naoki Kishida
See All by Naoki Kishida
ローカルLLM基礎知識 / local LLM basics 2025
kishida
27
14k
AIエージェントでのJava開発がはかどるMCPをAIを使って開発してみた / java mcp for jjug
kishida
5
900
AIの弱点、やっぱりプログラミングは人間が(も)勉強しよう / YAPC AI and Programming
kishida
13
6k
海外登壇の心構え - コワクナイヨ - / how to prepare for a presentation abroad
kishida
2
120
Current States of Java Web Frameworks at JCConf 2025
kishida
0
1.5k
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
25
7k
LLMベースAIの基本 / basics of LLM based AI
kishida
13
3.5k
Java 24まとめ / Java 24 summary
kishida
3
810
AI時代のプログラミング教育 / programming education in ai era
kishida
25
27k
Other Decks in Programming
See All in Programming
これならできる!個人開発のすゝめ
tinykitten
PRO
0
110
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
9
1.2k
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
390
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
470
Microservices rules: What good looks like
cer
PRO
0
1.4k
AIコーディングエージェント(NotebookLM)
kondai24
0
190
251126 TestState APIってなんだっけ?Step Functionsテストどう変わる?
east_takumi
0
320
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
110
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
160
Cap'n Webについて
yusukebe
0
130
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
140
connect-python: convenient protobuf RPC for Python
anuraaga
0
410
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Writing Fast Ruby
sferik
630
62k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
Automating Front-end Workflow
addyosmani
1371
200k
Designing Experiences People Love
moore
143
24k
Docker and Python
trallard
47
3.7k
What's in a price? How to price your products and services
michaelherold
246
13k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Why Our Code Smells
bkeepers
PRO
340
57k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Transcript
2023/07/05 1 LLMをやめよう 2023/7/5 LLM Meetup Tokyo #3 LINE Fukuoka
きしだ なおき 酒のネタになりそうなブログまとめ
2023/07/05 2 自己紹介 • きしだ なおき (@kis) • LINE Fukuoka
• 「プロになるJava」デテマス
2023/07/05 3 ChatGPTには感情があるかも? • そんな仕組みになってない? • 人間の役に立つよう強く躾られている • 難しいタスクが達成できると言葉が多くなる •
人間が非協力的でタスクが達成できないと 言葉が少なくなる • 塩対応 • 知らないことを聞かれると、知ってることで 言葉を埋める • これらが「感情」をもつように見える • 「感情」の定義次第といえるところまではきている
2023/07/05 4 大規模言語モデルは庶民的になる • コンピュータリソースや学習データなどから大規模かが難しい • GPT4で要求がだいたい満たせるので、そこまで需要がない? • 庶民的になる •
手元で動かしやすくなる • カスタマイズして手元の要求を満たす • もし大規模化しても、推論能力が あがるのではなく、人情がわかるようになる • 「解決方法じゃなく共感が欲しいんや」に 対応可能に
シンギュラリティは来ない • シンギュラリティ • =人工知能が自己発展することで技術発展が指数関数的に加速する • ロジカルに実現していることが前提 • 「AI」の学習に半年くらいかかるので加速しない •
データセンター拡張など ハードウェアの構築が必要 • なんだかんだ80億人いる人類にかなわない • 電話やインターネットのほうが 加速したのでは
LLMの「脳波」を観察してみる • GPT2モデルの全結合層の出力を保存 • CelebrasGPTを使用 • 英語の対応と日本語の対応で反応が強い部分が違う
LLMを壊してみよう • 「脳波」がとれたらそこを壊したくなるよね • 日本語対応で反応した部分をゼロリセットすると日本語がしゃべ れなくなる • 英語はしゃべれる • 英語対応で反応した部分をリセットしても
英語しゃべれる • 英語は学習量が多いので壊れにくい?
Function Callingでツールの操作 • Function Callingが出たのでツールの操作に使ってみる • 結構いい感じに操作できた
GPTで英語の勉強を手伝ってもらう • 日本語を渡して、レベルに応じた英文と難しい単語、理解度 チェック問題をつくってもらう • Function Callingが返すJSONがパースできない問題 • GPTに投げ直すのはコストが高い •
自力でパースして解決
LLMを使わずに自然言語でツールを操作 • ちょっとしたツール操作でGPT使うのはおおげさ • 格フレーム文法で雑に解決 • LLM使わずにすむならロジカルにやろう • チャットでも応答生成はロジカルに やったほうがよさげ
まとめ • LLMじゃなくても自然言語処理は楽しい