Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GunosyでのKinesis Analytics利用について / BigData JAWS ...
Search
koid
April 04, 2017
Technology
1
920
GunosyでのKinesis Analytics利用について / BigData JAWS 6 Kinesis Analytics
koid
April 04, 2017
Tweet
Share
More Decks by koid
See All by koid
新しい技術の導入時に大切にしていること / IVS CTO Night 2018 LT
koid
2
7.1k
GunosyでのKinesis Analytics利用について / AWS Solution Days 2017 -AWS DB Day-
koid
0
240
re:Inventに行ってきました - 気になった新サービス / AWS re:Invent2016 Participants LT
koid
0
2k
AWS Lambda - ピーキーなアクセスに備える / Gunosy Beer Bash #8
koid
0
2.1k
AWS Lambdaで複数アカウント間でアレコレする / Gunosy Beer Bash #7
koid
1
2.1k
サーバにログインしない・させないサービス運用 / AWS Summit 2015 Devcon
koid
6
9.1k
GunosyのMicroServicesとOpsWorks / よくわかる AWS OpsWorks
koid
18
6k
Other Decks in Technology
See All in Technology
データ資産をシームレスに伝達するためのイベント駆動型アーキテクチャ
kakehashi
PRO
2
530
地方拠点で エンジニアリングマネージャーってできるの? 〜地方という制約を楽しむオーナーシップとコミュニティ作り〜
1coin
1
230
レビューを増やしつつ 高評価維持するテクニック
tsuzuki817
1
710
2/18/25: Java meets AI: Build LLM-Powered Apps with LangChain4j
edeandrea
PRO
0
110
エンジニアが加速させるプロダクトディスカバリー 〜最速で価値ある機能を見つける方法〜 / product discovery accelerated by engineers
rince
4
320
自動テストの世界に、この5年間で起きたこと
autifyhq
10
8.5k
TAMとre:Capセキュリティ編 〜拡張脅威検出デモを添えて〜
fujiihda
2
240
Classmethod AI Talks(CATs) #16 司会進行スライド(2025.02.12) / classmethod-ai-talks-aka-cats_moderator-slides_vol16_2025-02-12
shinyaa31
0
110
クラウドサービス事業者におけるOSS
tagomoris
1
690
リーダブルテストコード 〜メンテナンスしやすい テストコードを作成する方法を考える〜 #DevSumi #DevSumiB / Readable test code
nihonbuson
11
7.2k
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.3k
バックエンドエンジニアのためのフロントエンド入門 #devsumiC
panda_program
18
7.5k
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
244
12k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
Side Projects
sachag
452
42k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
Adopting Sorbet at Scale
ufuk
74
9.2k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
Being A Developer After 40
akosma
89
590k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
550
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
174
51k
Become a Pro
speakerdeck
PRO
26
5.1k
Statistics for Hackers
jakevdp
797
220k
Transcript
GunosyでのKinesis Analytics利⽤について 株式会社Gunosy ⼩出 幸典
⾃⼰紹介 • 名前 – ⼩出 幸典 (こいで ゆきのり) • 所属
– 株式会社Gunosy • プロビジョニング・デプロイフローの共通化とか • 過剰リソース警察、コスト削減おじさん • 好きなAWSサービス – OpsWorks, Lambda, Kinesisファミリー, 最近ちょこっとECS
株式会社Gunosy – 「情報を世界中の⼈に最適に届ける」 • Gunosyは 情報キュレーションサービス「グノシー」と • 2016年6⽉1⽇にKDDI株式会社と共同でリリースした 無料ニュース配信アプリ「ニュースパス」を提供する •
会社です。「情報を世界中の⼈に最適に届ける」を ビジョンに活動しています。 ネット上に存在するさまざまな情報を、 独⾃のアルゴリズムで収集、評価付けを⾏い ユーザーに届けます。 情報キュレーションサービス 「グノシー」 600媒体以上のニュースソースをベースに、 新たに開発した情報解析・配信技術を⽤いて⾃動的に 選定したニュースや情報をユーザーに届けます。 無料ニュース配信アプリ 「ニュースパス」
宣伝:データ分析ブログやっています http://data.gunosy.io/
本⽇お話させていただく内容 Gunosyでどういった感じで Kinesis Analyticsを利⽤しているか
なぜストリーム処理/マイクロバッチ処理をしたいのか • 「情報を世界中の⼈に最適に届ける」 – 時間(鮮度)の制約 • 情報には「鮮度」がある – 頻度(量)の制約 •
⾒せられる情報量には限りがある • どういった⼈に、どういった情報が適しているのか – 事前に「誰にどのぐらい読まれるか」等の推定はしているが、⾄近 の実績値も評価に利⽤したい – より短い時間・より少ない試⾏で、実績値を集めたい
例えば • 記事クリックの(ニア)リアルタイム算出 – 「⼤域的な」傾向はわかる
例えば • 「⼤域的な」!= 全てのユーザ – それぞれどういった⼈に適しているのか
Gunosyでの右往左往 • 2013 mongodb+マイクロバッチで頑張っていた • 2014 Redshift+マイクロバッチで頑張っていた – fluentdのflush intervalが短すぎるとcopyが詰まる
– クエリ投げすぎても詰まる余り⾼頻度にできない • 2015 Norikraで頑張っていた – 度々⽌まるが知⾒無さすぎ→監視も復旧⾃動化もままならず – 我々には早かった • 2016 Spark Streamingで頑張っていた – ⾃由度⾼いけど開発コスト⾼し、インフラコスト⾼し – 我々にはオーバースペックだった 本⽇は割愛
本題 Kinesis Analyticsを利⽤してみた
ざっくりした構成(Source Stream) • 以前よりfluentdを利⽤してログ配送をしていた – 同じログをStreams/Firehoseに送る • fluent-plugin-kinesis • Kinesis
Analyticsはまだ東京に来ていないので、他リージョンへ Web servers (fluentd) Kinesis Firehose S3 (backup) Kinesis Analytics Elasticsearch Service summary log Mobile apps Source Stream log Tokyo Oregon Kinesis Firehose
Reference Dataの追加 • ユーザのセグメント別の集計 – どういったユーザが興味を⽰しているのか • S3にセグメント情報を配置 • ログにセグメント情報を付加し、セグメント別に集計
S3 User–Data Reference Data Web servers (fluentd) Kinesis Firehose S3 (backup) Kinesis Analytics Elasticsearch Service summary log Mobile apps Source Stream log Kinesis Firehose
SQL例 • ⼀度中間ストリームを作る – Source StreamとReference DataをJOIN
SQL例 • 中間ストリームのデータを1分おきにサマリして、出⼒へ
クエリ結果のイメージ • (再掲)
サービスへのフィードバック(出⼒) • 現在のところバッチサーバからESSへ取りに⾏っている – 突如ストリーム感が無くなったのは内緒 • ESSはIAM Roleでアクセス制御できる(VPCを考えなくて良い) • ESの集計関数が使える
Web servers (fluentd) Kinesis Firehose S3 (backup) Kinesis Analytics Elasticsearch Service summary log Mobile apps Source Stream log Tokyo Oregon Kinesis Firehose Batch Server Tokyo
苦労/⼯夫したところなど
東京リージョンのStreamsから他リージョンへの転送 • クライアントから直接ログを投げ込んでるケース – コンシューマ書きたくない • Lambdaで頑張ろうと思ったけどスループット厳しかった Kinesis Streams log
Mobile apps Tokyo Oregon Kinesis Streams ?
東京リージョンのStreamsから他リージョンへの転送 • コンシューマとしてfluentdを利⽤ – inputプラグインで東京のStreamsから取り出し • outputプラグインで他リージョンのStreams/Firehoseへ転送 • ついでにタグルーティングも Kinesis
Streams Mobile apps Tokyo Oregon Kinesis Streams fluentd server
利⽤していての所感
こうなると嬉しい • Source Stream – 1つのApplicationで複数のStreamを読み込めると嬉しい • 同じログを何度も別のStreamに書くのは冗⻑感がある fluent server
Tag: A+B Application 1 Tag: A+C Application 2 Tag: B+C Application 3 fluent server Tag: A Application 1 Tag: B Application 2 Tag: C Application 3
こうなると嬉しい • Reference Data – Console上で追加できると嬉しい – Console上で⾒えると嬉しい(サンプルだけでも良いので…)
まとめ • 開発が楽 – ほとんどConfig芸(IAMは⼤変) – クエリだけ集中して考えられる • 運⽤も楽 –
フルマネージド – 前後(Streams/Firehose)の流量は注意 • コストも安い – (ケース次第ですが)
終わりに • ご清聴ありがとうございました