Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GunosyでのKinesis Analytics利用について / AWS Solution...
Search
koid
July 05, 2017
Technology
0
240
GunosyでのKinesis Analytics利用について / AWS Solution Days 2017 -AWS DB Day-
koid
July 05, 2017
Tweet
Share
More Decks by koid
See All by koid
新しい技術の導入時に大切にしていること / IVS CTO Night 2018 LT
koid
2
7.1k
GunosyでのKinesis Analytics利用について / BigData JAWS 6 Kinesis Analytics
koid
1
920
re:Inventに行ってきました - 気になった新サービス / AWS re:Invent2016 Participants LT
koid
0
2k
AWS Lambda - ピーキーなアクセスに備える / Gunosy Beer Bash #8
koid
0
2.1k
AWS Lambdaで複数アカウント間でアレコレする / Gunosy Beer Bash #7
koid
1
2.1k
サーバにログインしない・させないサービス運用 / AWS Summit 2015 Devcon
koid
6
9.1k
GunosyのMicroServicesとOpsWorks / よくわかる AWS OpsWorks
koid
18
6k
Other Decks in Technology
See All in Technology
ABWGのRe:Cap!
hm5ug
1
120
生成AI × 旅行 LLMを活用した旅行プラン生成・チャットボット
kominet_ava
0
150
Azureの開発で辛いところ
re3turn
0
240
Reactフレームワークプロダクトを モバイルアプリにして、もっと便利に。 ユーザに価値を届けよう。/React Framework with Capacitor
rdlabo
0
110
EMConf JP の楽しみ方 / How to enjoy EMConf JP
pauli
2
150
0→1事業こそPMは営業すべし / pmconf #落選お披露目 / PM should do sales in zero to one
roki_n_
PRO
1
1k
Visual StudioとかIDE関連小ネタ話
kosmosebi
1
370
WantedlyでのKotlin Multiplatformの導入と課題 / Kotlin Multiplatform Implementation and Challenges at Wantedly
kubode
0
240
深層学習と3Dキャプチャ・3Dモデル生成(土木学会応用力学委員会 応用数理・AIセミナー)
pfn
PRO
0
450
Copilotの力を実感!3ヶ月間の生成AI研修の試行錯誤&成功事例をご紹介。果たして得たものとは・・?
ktc_shiori
0
340
あなたの知らないクラフトビールの世界
miura55
0
120
ゼロからわかる!!AWSの構成図を書いてみようワークショップ 問題&解答解説 #デッカイギ #羽田デッカイギおつ
_mossann_t
0
1.5k
Featured
See All Featured
Being A Developer After 40
akosma
89
590k
How to train your dragon (web standard)
notwaldorf
89
5.8k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
RailsConf 2023
tenderlove
29
970
Done Done
chrislema
182
16k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.5k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.4k
A Philosophy of Restraint
colly
203
16k
Transcript
GunosyでのKinesis Analytics利⽤について 株式会社Gunosy ⼩出 幸典
⾃⼰紹介 • 名前 – ⼩出 幸典 (こいで ゆきのり) • 所属
– 株式会社Gunosy • 好きなAWSサービス – OpsWorks, Lambda, Kinesisファミリー, ECS
株式会社Gunosy – 「情報を世界中の⼈に最適に届ける」 Gunosyは 情報キュレーションサービス「グノシー」と 2016年6⽉1⽇にKDDI株式会社と共同でリリースした 無料ニュース配信アプリ「ニュースパス」を提供する 会社です。「情報を世界中の⼈に最適に届ける」を ビジョンに活動しています。 ネット上に存在するさまざまな情報を、
独⾃のアルゴリズムで収集、評価付けを⾏い ユーザーに届けます。 情報キュレーションサービス 「グノシー」 600媒体以上のニュースソースをベースに、 新たに開発した情報解析・配信技術を⽤いて⾃動的に 選定したニュースや情報をユーザーに届けます。 無料ニュース配信アプリ 「ニュースパス」
Gunosyと機械学習・データ分析 • Gunosyでは、様々な情報を収集し、独⾃のアルゴリズム で評価付けを⾏い、ユーザに届けています 各種コンテンツ (記事、商品、動画)
Gunosyと機械学習・データ分析 • ユーザの⾏動から、属性(年齢・性別・etc)を推定し、 コンテンツとのマッチングを⾏っています 各種コンテンツ (記事、商品、動画) 性別 年齢 地域... カテゴリ
著者 地域性...
Gunosyと機械学習・データ分析 • 本⽇はニュース領域での事例についてお話させて頂きます 各種コンテンツ (記事、商品、動画)
本⽇お話させていただく内容 Gunosyでどのように Kinesis Analyticsを利⽤しているか
なぜストリーム処理/マイクロバッチ処理をしたいのか • 「情報を世界中の⼈に最適に届ける」 – 時間(鮮度)の制約 • 情報には「鮮度」がある – 頻度(量)の制約 •
⾒せられる情報量には限りがある • どういった⼈に、どういった情報が適しているのか – 事前に「どのぐらい読まれそうか」といった推定はしているが、 ⾄近の実績値も即座にサービスにフィードバックしたい – より短い時間・より少ない試⾏で、サービスに反映したい
例えば • 記事クリックの(ニア)リアルタイム算出 – 「⼤域的な」傾向を掴みたい
Gunosyでのストリーム集計の右往左往 • 2013 mongodb Capped Collections • 2014 Redshift –
fluentdのflush intervalが短すぎるとcopyが詰まってくる • 2015 Norikra – 知⾒が無さすぎて運⽤がままならず – 我々には早かった • 2016 Kinesis+Spark Streaming (on EMR) – ⾃由度は⾼い⼀⽅、開発コスト⾼し、サーバコスト⾼し – 我々にはオーバースペックだった
本題 Kinesis Analyticsの適⽤
ざっくりとした構成 • 以前よりfluentdを利⽤してログ配送をしていた – 同じログをStreams/Firehoseに送る • fluent-plugin-kinesis • Kinesis Analyticsはまだ東京へは来ていないので、他リージョンへ
Web servers (fluentd) Kinesis Firehose S3 (backup) Kinesis Analytics Elastic Search Service summary log Mobile apps Source Stream log Tokyo Oregon Kinesis Firehose
Reference Dataの追加 • ユーザのセグメント別の集計 – どういったユーザが興味を⽰しているのか • S3にセグメント情報を配置 • ログにセグメント情報を付加し、セグメント別に集計
S3 User–Data Reference Data Web servers (fluentd) Kinesis Firehose S3 (backup) Kinesis Analytics Elastic Search Service summary log Mobile apps Source Stream log Kinesis Firehose
SQL例 • ⼀度中間ストリームを作る – Source StreamとReference DataをJOIN
SQL例 • 中間ストリームのデータを1分おきに集計して、出⼒へ
クエリ結果のイメージ • ユーザのセグメント毎に、傾向を知ることができる
サービスへのフィードバック(出⼒) • 現在のところバッチサーバからESSへ取りに⾏っている – ESSはIAM Roleでアクセス制御できる • クロスリージョンやVPCを意識しなくて良い – ESの集計関数が使える
Web servers (fluentd) Kinesis Firehose S3 (backup) Kinesis Analytics Elastic Search Service summary log Mobile apps Source Stream log Tokyo Oregon Kinesis Firehose Batch Server Tokyo
Tips
東京リージョンのStreamsから他リージョンへの転送 • クライアントから直接ログを投げ込んでいるケース – 余り⼿をかけてコンシューマを開発したくない • Lambdaも試したが、スループットの⾯で厳しかった Kinesis Streams log
Mobile apps Tokyo Oregon Kinesis Streams ?
東京リージョンのStreamsから他リージョンへの転送 • コンシューマとしてfluentdを利⽤ – inputプラグインで東京のStreamsから取り出し • outputプラグインで他リージョンのStreams/Firehoseへ転送 • タグによるルーティングや、必要に応じて整形を実施 Kinesis
Streams Mobile apps Tokyo Oregon Kinesis Streams fluentd server
利⽤していての所感
まとめ • 開発が楽になった – IAMの設定は⼤変だが省⼒化できる – クエリだけ集中して考えれば良い • 運⽤も楽になった –
フルマネージド – 但し、前後(Streams/Firehose)の流量には注意 • サーバコストも安くなった – ※もちろん、ケース次第です → トータルコストの削減+デリバリの短縮へ
宣伝 • エンジニアブログやっています http://data.gunosy.io/ http://tech.gunosy.io/
終わりに • ご清聴ありがとうございました