in large data sets." science 334.6062 (2011): 1518-1524. MIC
HSIC
https://www.jst.go.jp/kisoken/aip/program/inter/vol2_sympo/slides/par t1_2_yamada.pdf Gretton, Arthur, et al. "Measuring statistical dependence with Hilbert-Schmidt norms." International conference on algorithmic learning theory. Springer, Berlin, Heidelberg, 2005. https://www.ism.ac.jp/~fukumizu/OsakaU2014/OsakaU_6kernelMea n.pdf dCor
https://towardsdatascience.com/introducing-distance-correlation-a-su perior-correlation-metric-d569dc8900c7 Székely, Gábor J., Maria L. Rizzo, and Nail K. Bakirov. "Measuring and testing dependence by correlation of distances." The annals of statistics 35.6 (2007): 2769-2794. Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. "Sparse inverse covariance estimation with the graphical lasso." Biostatistics 9.3 (2008): 432-441. Graphical Lasso
Witten, Daniela M., Jerome H. Friedman, and Noah Simon. "New insights and faster computations for the graphical lasso." Journal of Computational and Graphical Statistics 20.4 (2011): 892-900. sGMRFmix
Idé, Tsuyoshi, Ankush Khandelwal, and Jayant Kalagnanam. "Sparse Gaussian Markov random field mixtures for anomaly detection." 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016. TVGL
Hallac, David, et al. "Network inference via the time-varying graphical lasso." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017.