Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
組織とデータ分析/統計的仮説検定 / Organization and Data Analys...
Search
Kenji Saito
PRO
November 30, 2023
Business
1
130
組織とデータ分析/統計的仮説検定 / Organization and Data Analysis, and Statistical Hypothesis Testing
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬の第1-2回で使用したスライドです。
Kenji Saito
PRO
November 30, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
多重比較/相関分析 / Multiple Comparison and Correlation Analysis
ks91
PRO
0
49
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 3
ks91
PRO
0
35
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 2
ks91
PRO
0
35
アカデミーキャンプ 2025冬「考えるのは奴らだ」 / Academy Camp 2025 Winter - Live and Let Think DAY 1
ks91
PRO
1
63
インクルーシブな社会へ / Toward an Inclusive Society
ks91
PRO
0
10
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
55
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
65
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
21
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
52
Other Decks in Business
See All in Business
ゲーム型ダイバーシティ&インクルージョン研修「バルーンバ人文化を探れ」
chibanba1982
PRO
0
160
地図作成ゲーム「ジグソータウン」
chibanba1982
PRO
0
290
情報整理ゲーム「野球のポジション当てゲーム オンライン版」
chibanba1982
PRO
0
480
ヘリウムリング&フープリレーアクティビティ
chibanba1982
PRO
0
800
Terra Charge|会社紹介 / Terra Charge Company Profile
contents
0
380
20240119_pmconf2024_落選セッションお披露目会_駄菓子屋PM的「PMネクストキャリア」3つの誤解
mindman
1
1.7k
技術広報の集い #5 LT 資料 2025 年挑戦したいこと
n0mzk
0
220
ブロックを用いた情報整理ゲーム「モンスタービルディング」
chibanba1982
PRO
0
1.4k
コンセンサスゲーム「雪山での遭難」
chibanba1982
PRO
0
930
家族アルバム みてね 事業紹介 / Our Business
familyalbum
4
29k
CFMフレームワークを活用した AWSコスト管理ガイドラインを策定した話
o2mami
2
440
株式会社B4A 会社紹介
b4a
0
6.1k
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
113
50k
Speed Design
sergeychernyshev
25
740
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.2k
Statistics for Hackers
jakevdp
797
220k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Building Applications with DynamoDB
mza
93
6.2k
Agile that works and the tools we love
rasmusluckow
328
21k
Measuring & Analyzing Core Web Vitals
bluesmoon
5
210
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.6k
Transcript
generated by Stable Diffusion XL v1.0 2023 1-2 (WBS) 2023
1-2 — 2023-11-30 – p.1/36
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter Discord . . . Discord 2023 1-2 — 2023-11-30
– p.2/36
( ) ( ) ( ) SFC ( ) CSO
(Chief Science Officer) 1993 ( ) 2006 ( ) SFC 23 P2P (Peer-to-Peer) 2011 ( ) 2018 2019 VR 2021.9 & VR 2022.3 2023 AI VR&RPG 2023.5 “Don’t Be So Serious” VOXEL 2023.7 DAZE 2023 In Maker Faire Tokyo 2023 → ( ) 2023 1-2 — 2023-11-30 – p.3/36
Dropbox Dropbox ( ) 2023 1-2 — 2023-11-30 – p.4/36
(B A ) 1 ( ) 2 (Wilcoxon-Mann-Whitney ) 2023
1-2 — 2023-11-30 – p.5/36
R 2023 1-2 — 2023-11-30 – p.6/36
[ ] , (2022) R R ( ) R 2023
1-2 — 2023-11-30 – p.7/36
( ) 1 11 30 • 2 11 30 (B
A ) • 3 12 7 4 12 7 5 12 14 6 12 14 t 7 12 21 2 ( ) t 8 12 21 2 ( ) t 9 1 11 P 10 1 11 11 1 18 12 1 18 13 1 25 14 1 25 W-IOI 2023 1-2 — 2023-11-30 – p.8/36
( 20 ) 1 • 2 R • 3 •
4 • 5 6 ( ) 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/14 ) / (2 ) OK / 2023 1-2 — 2023-11-30 – p.9/36
. . . . . . ( ) ( 20
×(14+1) ) 2023 1-2 — 2023-11-30 – p.10/36
(2 )(160 ) (10∼20 ) ( ) and/or 1 (80
) 1 Q & A & (30∼40 ) (30∼40 ) 2023 1-2 — 2023-11-30 – p.11/36
Moodle ( Q&A ) ( ) Discord ( ) ←
( ) 2023 1-2 — 2023-11-30 – p.12/36
( ) A4 2 2 (Overleaf ) L ATEX PDF
( ) 2023 1-2 — 2023-11-30 – p.13/36
+ + [ ] R , (2008) R 2023 1-2
— 2023-11-30 – p.14/36
2023 1-2 — 2023-11-30 – p.15/36
= ⇒ (1) (2) (3) = ⇒ ( ) (
(2)) = ⇒ ( ) ( ) AI 2023 1-2 — 2023-11-30 – p.16/36
(observation) (sample) (random variable) (probability distribution) (population) (simple random sampling)
( )( 2 t , , ) 2 ( , ) 2023 1-2 — 2023-11-30 – p.17/36
(B A ) 1 ( ) 2 (Wilcoxon-Mann-Whitney ) 2023
1-2 — 2023-11-30 – p.18/36
1 ( ) P(X = x) = n C x
· px · (1 − p)n−x E[X] = np (1) (null hypothesis) H0 (2) (test statistic) ( x ) (3) H0 (null distribution) (4) (rejection region) ( ; 5% 1%) · (significance level) (5) ( H0 ) 2023 1-2 — 2023-11-30 – p.19/36
B ( p.47) RStudio R n C x ‘choose(n,x)’ n
= 18, x = 0 . . . choose(18,0)×0.50 × 0.518 = choose(18,0)×0.518 ( ) ⇒ ( ) 3 : : : 2023 1-2 — 2023-11-30 – p.20/36
R ( B)(1/2) — R n <- 18 # p
<- 0.5 # <- c() # ( ) # x 0 for (x in 0:n) { # <- c( , choose(n,x)*p^x*(1-p)^(n-x)) } halfp <- 0 # ( 0 1) ( ) 2023 1-2 — 2023-11-30 – p.21/36
R ( B)(2/2) — R # x 0 ( )
for (x in 0:n) { # 0.025 if (halfp + [x+1] > 0.025) { break } halfp <- halfp + [x+1] # } # color <- rep(c("red"), x) # rep 2 color <- c(color, rep(c("black"), n + 1 - x*2), color) <- 0:n # x # plot (lwd ) plot( , , type="h", lwd=3, col=color) 2023 1-2 — 2023-11-30 – p.22/36
0 5 10 15 0.00 0.05 0.10 0.15 ேᩘ ☜⋡
2023 1-2 — 2023-11-30 – p.23/36
R > binom.test(14, n=18, p=0.5) p-value (P )( 9 )
0.05 ↑ 2023 1-2 — 2023-11-30 – p.24/36
2 (Wilcoxon-Mann-Whitney ) WMW ( ) A B A B
( ) (2) U (U ) · U = min(nAnB + 1 2 nA (nA + 1) − RA, nAnB + 1 2 nB (nB + 1) − RB ) (4) ((3) ) U0.05 (5) U U0.05 2023 1-2 — 2023-11-30 – p.25/36
D ( p.70) RStudio . . . 2023 1-2 —
2023-11-30 – p.26/36
R ( D)(1/2) — GPT ChatGPT (GPT-4) R ( )
1 ( ) ⇒ GPT-4 (1/2) # calculate_rank_sum <- function(sample1, sample2) { # combined_samples <- c(sample1, sample2) sample_group <- c(rep("sample1", length(sample1)), rep("sample2", length(sample2))) # ranks <- rank(combined_samples) 2023 1-2 — 2023-11-30 – p.27/36
R ( D)(2/2) — GPT ⇒ GPT-4 (2/2) # df
<- data.frame(value = combined_samples, group = sample_group, rank = ranks) # rank_sum_sample1 <- sum(df[df$group == "sample1", "rank"]) rank_sum_sample2 <- sum(df[df$group == "sample2", "rank"]) return(list(sample1_rank_sum = rank_sum_sample1, sample2_rank_sum = rank_sum_sample2)) } # sample1 <- c(3, 1, 4) sample2 <- c(2, 5, 6) # calculate_rank_sum(sample1, sample2) 2023 1-2 — 2023-11-30 – p.28/36
GPT . . . GPT-4 . . . ‘rank(. .
.)’ RStudio Help → Search R Help ⇒ GPT GPT 3 (1) (GPT ) (2) (GPT ) (3) 2023 1-2 — 2023-11-30 – p.29/36
R ( D)(1/2) — R <- c(4.6, 5.6, 3.2, 3.2,
3.7, 4.0, 5.0, 4.6) <- c(4.6, 4.9, 7.1, 6.0, 5.2, 3.9, 5.3, 5.8) # combined_samples <- c( , ) sample_group <- c(rep(" ", length( )), rep(" ", length( ))) # ranks <- rank(combined_samples) # df <- data.frame(value = combined_samples, group = sample_group, rank = ranks) # ra <- sum(df[df$group == " ", "rank"]) rb <- sum(df[df$group == " ", "rank"]) 2023 1-2 — 2023-11-30 – p.30/36
R ( D)(2/2) — R # U na <- length(
) nb <- length( ) U <- min(na*nb + na / 2 * (na + 1) - ra, na*nb + nb / 2 * (nb + 1) - rb) print(paste("U =", U)) # paste # sdf <- data.frame( , ) # boxplot(sdf, ylim=c(0, 8.0), ylab=" ( : )") U U0.05 2023 1-2 — 2023-11-30 – p.31/36
⫧‶ ⫧‶࡛ࡣ࡞࠸ 0 2 4 6 8 ᖺ (༢:ⓒ) 2023
1-2 — 2023-11-30 – p.32/36
R WMW > wilcox.test( , ) p-value (P )( 9
) 0.05 P ↑ 2023 1-2 — 2023-11-30 – p.33/36
2023 1-2 — 2023-11-30 – p.34/36
1. (1) (2) 2023 12 3 ( ) 23:59 JST
( ) Waseda Moodle (Q & A ) 2023 1-2 — 2023-11-30 – p.35/36
2023 1-2 — 2023-11-30 – p.36/36