Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
組織とデータ分析/統計的仮説検定 / Organization and Data Analys...
Search
Kenji Saito
PRO
November 30, 2023
Business
1
150
組織とデータ分析/統計的仮説検定 / Organization and Data Analysis, and Statistical Hypothesis Testing
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬の第1-2回で使用したスライドです。
Kenji Saito
PRO
November 30, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
デジタルトランスフォーメーションと民主主義 / Digital Transformation and Democracy
ks91
PRO
0
7
We Never Took the Kobayashi Maru Test Until Now. What Do You Think of Our Solutions? — Journeys of the Mind Through a No-Win Game
ks91
PRO
0
19
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
75
ロボットを雰囲気(ヴァイブ)でプログラミングするこどもたち / Children Vibe-Programming Robots
ks91
PRO
0
23
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 3
ks91
PRO
0
31
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 2
ks91
PRO
0
35
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
160
未来へのフォワードキャスト / Forward Cast to the Future
ks91
PRO
0
88
発表と総括 / Presentations and Summary
ks91
PRO
0
62
Other Decks in Business
See All in Business
家族アルバム みてね 事業紹介 / Our Business
familyalbum
6
46k
物流の専門家がお客様に伴走するサブスク型コンサルティング
mclogi
0
450
ヘルスベイシス_会社説明資料_v3.4
yasudashoyo
1
63k
快適なエンジニアリングライフ実現するための ワークもとい会社ハック / Work Hacks for a More Comfortable Engineering Life
nttcom
6
2.2k
ナウビレッジ株式会社_会社紹介資料_20250821
nowvill
0
12k
エンジニア採用を引き継いだあなたへ〜EMが採用に向き合うとき、まず知っておきたいこと〜
kkun_22
PRO
1
560
ele&company_companydeck
eleand
0
340
操電会社紹介資料 / Soden Company Deck
soden
0
600
CREによる顧客のキャッチアップを加速する仕組み作り / Creating a mechanism to accelerate customer catch-up through CRE
woody_kawagoe
1
260
2025年版株式会社オーご紹介資料
ohbame
0
140
【営業職】中途採用向け会社説明資料(テックファーム株式会社)
techfirm
0
430
Sales Marker Culture book
salesmarker
PRO
42
68k
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Done Done
chrislema
185
16k
Agile that works and the tools we love
rasmusluckow
330
21k
Being A Developer After 40
akosma
90
590k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Typedesign – Prime Four
hannesfritz
42
2.8k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Transcript
generated by Stable Diffusion XL v1.0 2023 1-2 (WBS) 2023
1-2 — 2023-11-30 – p.1/36
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter Discord . . . Discord 2023 1-2 — 2023-11-30
– p.2/36
( ) ( ) ( ) SFC ( ) CSO
(Chief Science Officer) 1993 ( ) 2006 ( ) SFC 23 P2P (Peer-to-Peer) 2011 ( ) 2018 2019 VR 2021.9 & VR 2022.3 2023 AI VR&RPG 2023.5 “Don’t Be So Serious” VOXEL 2023.7 DAZE 2023 In Maker Faire Tokyo 2023 → ( ) 2023 1-2 — 2023-11-30 – p.3/36
Dropbox Dropbox ( ) 2023 1-2 — 2023-11-30 – p.4/36
(B A ) 1 ( ) 2 (Wilcoxon-Mann-Whitney ) 2023
1-2 — 2023-11-30 – p.5/36
R 2023 1-2 — 2023-11-30 – p.6/36
[ ] , (2022) R R ( ) R 2023
1-2 — 2023-11-30 – p.7/36
( ) 1 11 30 • 2 11 30 (B
A ) • 3 12 7 4 12 7 5 12 14 6 12 14 t 7 12 21 2 ( ) t 8 12 21 2 ( ) t 9 1 11 P 10 1 11 11 1 18 12 1 18 13 1 25 14 1 25 W-IOI 2023 1-2 — 2023-11-30 – p.8/36
( 20 ) 1 • 2 R • 3 •
4 • 5 6 ( ) 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/14 ) / (2 ) OK / 2023 1-2 — 2023-11-30 – p.9/36
. . . . . . ( ) ( 20
×(14+1) ) 2023 1-2 — 2023-11-30 – p.10/36
(2 )(160 ) (10∼20 ) ( ) and/or 1 (80
) 1 Q & A & (30∼40 ) (30∼40 ) 2023 1-2 — 2023-11-30 – p.11/36
Moodle ( Q&A ) ( ) Discord ( ) ←
( ) 2023 1-2 — 2023-11-30 – p.12/36
( ) A4 2 2 (Overleaf ) L ATEX PDF
( ) 2023 1-2 — 2023-11-30 – p.13/36
+ + [ ] R , (2008) R 2023 1-2
— 2023-11-30 – p.14/36
2023 1-2 — 2023-11-30 – p.15/36
= ⇒ (1) (2) (3) = ⇒ ( ) (
(2)) = ⇒ ( ) ( ) AI 2023 1-2 — 2023-11-30 – p.16/36
(observation) (sample) (random variable) (probability distribution) (population) (simple random sampling)
( )( 2 t , , ) 2 ( , ) 2023 1-2 — 2023-11-30 – p.17/36
(B A ) 1 ( ) 2 (Wilcoxon-Mann-Whitney ) 2023
1-2 — 2023-11-30 – p.18/36
1 ( ) P(X = x) = n C x
· px · (1 − p)n−x E[X] = np (1) (null hypothesis) H0 (2) (test statistic) ( x ) (3) H0 (null distribution) (4) (rejection region) ( ; 5% 1%) · (significance level) (5) ( H0 ) 2023 1-2 — 2023-11-30 – p.19/36
B ( p.47) RStudio R n C x ‘choose(n,x)’ n
= 18, x = 0 . . . choose(18,0)×0.50 × 0.518 = choose(18,0)×0.518 ( ) ⇒ ( ) 3 : : : 2023 1-2 — 2023-11-30 – p.20/36
R ( B)(1/2) — R n <- 18 # p
<- 0.5 # <- c() # ( ) # x 0 for (x in 0:n) { # <- c( , choose(n,x)*p^x*(1-p)^(n-x)) } halfp <- 0 # ( 0 1) ( ) 2023 1-2 — 2023-11-30 – p.21/36
R ( B)(2/2) — R # x 0 ( )
for (x in 0:n) { # 0.025 if (halfp + [x+1] > 0.025) { break } halfp <- halfp + [x+1] # } # color <- rep(c("red"), x) # rep 2 color <- c(color, rep(c("black"), n + 1 - x*2), color) <- 0:n # x # plot (lwd ) plot( , , type="h", lwd=3, col=color) 2023 1-2 — 2023-11-30 – p.22/36
0 5 10 15 0.00 0.05 0.10 0.15 ேᩘ ☜⋡
2023 1-2 — 2023-11-30 – p.23/36
R > binom.test(14, n=18, p=0.5) p-value (P )( 9 )
0.05 ↑ 2023 1-2 — 2023-11-30 – p.24/36
2 (Wilcoxon-Mann-Whitney ) WMW ( ) A B A B
( ) (2) U (U ) · U = min(nAnB + 1 2 nA (nA + 1) − RA, nAnB + 1 2 nB (nB + 1) − RB ) (4) ((3) ) U0.05 (5) U U0.05 2023 1-2 — 2023-11-30 – p.25/36
D ( p.70) RStudio . . . 2023 1-2 —
2023-11-30 – p.26/36
R ( D)(1/2) — GPT ChatGPT (GPT-4) R ( )
1 ( ) ⇒ GPT-4 (1/2) # calculate_rank_sum <- function(sample1, sample2) { # combined_samples <- c(sample1, sample2) sample_group <- c(rep("sample1", length(sample1)), rep("sample2", length(sample2))) # ranks <- rank(combined_samples) 2023 1-2 — 2023-11-30 – p.27/36
R ( D)(2/2) — GPT ⇒ GPT-4 (2/2) # df
<- data.frame(value = combined_samples, group = sample_group, rank = ranks) # rank_sum_sample1 <- sum(df[df$group == "sample1", "rank"]) rank_sum_sample2 <- sum(df[df$group == "sample2", "rank"]) return(list(sample1_rank_sum = rank_sum_sample1, sample2_rank_sum = rank_sum_sample2)) } # sample1 <- c(3, 1, 4) sample2 <- c(2, 5, 6) # calculate_rank_sum(sample1, sample2) 2023 1-2 — 2023-11-30 – p.28/36
GPT . . . GPT-4 . . . ‘rank(. .
.)’ RStudio Help → Search R Help ⇒ GPT GPT 3 (1) (GPT ) (2) (GPT ) (3) 2023 1-2 — 2023-11-30 – p.29/36
R ( D)(1/2) — R <- c(4.6, 5.6, 3.2, 3.2,
3.7, 4.0, 5.0, 4.6) <- c(4.6, 4.9, 7.1, 6.0, 5.2, 3.9, 5.3, 5.8) # combined_samples <- c( , ) sample_group <- c(rep(" ", length( )), rep(" ", length( ))) # ranks <- rank(combined_samples) # df <- data.frame(value = combined_samples, group = sample_group, rank = ranks) # ra <- sum(df[df$group == " ", "rank"]) rb <- sum(df[df$group == " ", "rank"]) 2023 1-2 — 2023-11-30 – p.30/36
R ( D)(2/2) — R # U na <- length(
) nb <- length( ) U <- min(na*nb + na / 2 * (na + 1) - ra, na*nb + nb / 2 * (nb + 1) - rb) print(paste("U =", U)) # paste # sdf <- data.frame( , ) # boxplot(sdf, ylim=c(0, 8.0), ylab=" ( : )") U U0.05 2023 1-2 — 2023-11-30 – p.31/36
⫧‶ ⫧‶࡛ࡣ࡞࠸ 0 2 4 6 8 ᖺ (༢:ⓒ) 2023
1-2 — 2023-11-30 – p.32/36
R WMW > wilcox.test( , ) p-value (P )( 9
) 0.05 P ↑ 2023 1-2 — 2023-11-30 – p.33/36
2023 1-2 — 2023-11-30 – p.34/36
1. (1) (2) 2023 12 3 ( ) 23:59 JST
( ) Waseda Moodle (Q & A ) 2023 1-2 — 2023-11-30 – p.35/36
2023 1-2 — 2023-11-30 – p.36/36