Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゼロからわかるリザバーコンピューティング
Search
Yuta Kurotaki
December 14, 2023
Research
1
1.5k
ゼロからわかるリザバーコンピューティング
コードとカクテル:GMOペパボのAIナイト - LT大忘年会 -
https://gmo.connpass.com/event/304045/
Yuta Kurotaki
December 14, 2023
Tweet
Share
More Decks by Yuta Kurotaki
See All by Yuta Kurotaki
CTO Night & Day 2024 Product Feedback Lunch
kurotaky
1
140
SUZURI DX 2023
kurotaky
1
180
How GitHub Copilot Transforms Development Productivity
kurotaky
18
13k
The story of repairing my junk keyboard with The kinT keyboard controller
kurotaky
0
1.6k
DevRel_Japan CONFERENCE 2023
kurotaky
1
1.9k
ctoa-wakate-01-company-introduction
kurotaky
0
290
Ethereum for Ruby
kurotaky
2
2k
NFTコンテンツでオリジナルグッズ作成を支える技術
kurotaky
1
170
SIG-BTI-2022-kickoff
kurotaky
0
280
Other Decks in Research
See All in Research
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.3k
Combinatorial Search with Generators
kei18
0
530
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
1.8k
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
390
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
1.2k
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
570
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
560
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
770
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
230
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
220
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
180
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
860
Featured
See All Featured
Site-Speed That Sticks
csswizardry
10
770
Rails Girls Zürich Keynote
gr2m
95
14k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Typedesign – Prime Four
hannesfritz
42
2.7k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Gamification - CAS2011
davidbonilla
81
5.4k
Transcript
1 ゼロからわかる リザバーコンピューティング 黒瀧 悠太 コードとカクテル:GMOペパボのAIナイト - LT⼤忘年会 - 2023.12.14
2 ⾃⼰紹介 黒瀧 悠太 Yuta Kurotaki • SUZURI事業部シニアエンジニアリングリード • GMOインターネットグループ
デベロッパーエキスパート • リザバーコンピューティングに関する 勉強や開発をしている • SNS : @kurotaky • ⾳楽が好き、ドラマーです。
SUZURI 3
SUZURI 4
SUZURI 5
6 https://jab.tokyo/
7
8 アジェンダ 1. リザバーコンピューティングについて 2. エコーステートネットワーク概要 3. まとめ
リザバーコンピューティングについて • 時系列データの入力に対する 複雑な動的応答を生成する計算手法 • 波紋パターンは入力された時系列 情報を表し、リザバーによる状態変化 を分析することで、時系列データを認識 し解析する リザバーコンピューティングとは?
9 水面におはじきを投げ入れると、複雑な波紋が広がる 知 識の森 リザバーコンピューティング , 電子情報通信学会 . 時系列の入力をリザ バーに与えると、入力の 大きさや順序に応じた動 的な波紋のパターンが 生じる
リザバーコンピューティングについて 10 ニューラルネットワークとリザバーコンピューティング
リザバーコンピューティングについて 1986年 Jordan ネットワーク 1989年 Real-Time Recurrent Learning (RTRL) 1990年
Elman ネットワーク Backpropagation Through Time (BPTT) 1997年 ⻑‧短期記憶 (LSTM) 2001年 エコーステートネットワーク (ESN) 2002年 リキッドステートマシン (LSM) 2014年 ゲート付き回帰型ユニット (GRU) Recurrent Neural Network の歴史 11 リザバーコンピューティング|森北出版株式会社 , p.9 表1.1を参考に作成 Jaeger, GMD Report. 148, 34 (2001) Maass, et al. Neural Computation. 14, 11 (2002)
リザバーコンピューティングについて 深層学習 (Deep Neural Network) との違い 12 学習コスト 計算性能 リザバー
コンピューティング ESN、LSM リザバーコンピューティング|森北出版株式会社 , p.6 図 1.3 を参考に作成 線形学習器 線形回帰モデルなど ディープラーニングモ デル RNN、LSTM、GRU
エコーステートネットワーク概要 エコーステートネットワーク (ESN) 13 Introduction to Next Generation Reservoir Computing
https://www.youtube.com/watch?v=wbH4En-k5Gs
エコーステートネットワーク概要 Input Layer と Reservoir 14 入力層とリザバーの接続 ランダムで固定された 重みを持つ接続 リザバー内のニューロン
ランダムで固定された リカレント接続
エコーステートネットワーク概要 出力層 トレーニング可能な 出力重みを持つ Reservoir と Output Layer 15
エコーステートネットワーク概要 リッジ回帰の出⼒重みの導出過程 16 損失関数 損失関数を微分 Woutについて解く 正規化項 を加えた自己相関行列の逆行列を計算
エコーステートネットワーク概要 リードアウトのみ調整 ESNでは、リザバーから出力層への重みだけ調整される。その ため計算が速く、消費電力も少ない → エッジデバイスでの応用、環境に優しい など エコーステートネットワークの特徴 17
エコーステートネットワーク概要 医療: EEG, ECG, EMG, ⼼拍, 眼球運動など 画像: ⼿書き⽂字画像, 動画像
⾳声: 発話, ⾳響, ⾳楽 機械: モーター, ロボット その他にも応⽤例は沢⼭、物理リザバーもある リザバーコンピューティングの応⽤ 18
エコーステートネットワーク概要 サンプルプログラム 19 https://mantas.info/code/simple_esn/ Mackey-Glass 方程式 複雑で非線形な時間系列データをどの程度正確に予 測できるかをテスト
エコーステートネットワーク概要 サンプルプログラム 20
エコーステートネットワーク概要 resSizeでの⽐較 21 resSize = 50 resSize = 500
エコーステートネットワーク概要 resSize = 1000 22
エコーステートネットワーク概要 resSize = 10 23
エコーステートネットワーク概要 resSize = 10000 24 計算がおわりません! (発表に間に合わなさそうなので止めた)
エコーステートネットワーク概要 - ⾮線形系 - ⾮線形な振る舞いを⽰し、複雑なパターンや信号を処理 - エコーステート性 - リザバーの現在の状態は過去の入力に影響される -
時間が経つにつれ、その影響は消失 - ⾼次元 - より複雑なパターンの処理をおこなうため リザバーコンピューティングに求められる特性 25
まとめ • リザバーコンピューティングの概要 • エコーステートネットワークについて • リザバーコンピューティングの応⽤例について • サンプルプログラムを実⾏しての考察 まとめ
26
27 Thank you! We’re hiring!