Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゼロからわかるリザバーコンピューティング
Search
Yuta Kurotaki
December 14, 2023
Research
1
1.9k
ゼロからわかるリザバーコンピューティング
コードとカクテル:GMOペパボのAIナイト - LT大忘年会 -
https://gmo.connpass.com/event/304045/
Yuta Kurotaki
December 14, 2023
Tweet
Share
More Decks by Yuta Kurotaki
See All by Yuta Kurotaki
GMOペパボのSUZURIを支えるAIOpsの実践
kurotaky
0
120
CTO Night & Day 2024 Product Feedback Lunch
kurotaky
1
160
SUZURI DX 2023
kurotaky
1
200
How GitHub Copilot Transforms Development Productivity
kurotaky
18
14k
The story of repairing my junk keyboard with The kinT keyboard controller
kurotaky
0
1.7k
DevRel_Japan CONFERENCE 2023
kurotaky
1
2k
ctoa-wakate-01-company-introduction
kurotaky
0
310
Ethereum for Ruby
kurotaky
2
2k
NFTコンテンツでオリジナルグッズ作成を支える技術
kurotaky
1
200
Other Decks in Research
See All in Research
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
390
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
200
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
280
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
500
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
300
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
680
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
330
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
150
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
180
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
350
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
4 Signs Your Business is Dying
shpigford
187
22k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
78
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
74
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Test your architecture with Archunit
thirion
1
2.1k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
270
Navigating Weather and Climate Data
rabernat
0
66
Transcript
1 ゼロからわかる リザバーコンピューティング 黒瀧 悠太 コードとカクテル:GMOペパボのAIナイト - LT⼤忘年会 - 2023.12.14
2 ⾃⼰紹介 黒瀧 悠太 Yuta Kurotaki • SUZURI事業部シニアエンジニアリングリード • GMOインターネットグループ
デベロッパーエキスパート • リザバーコンピューティングに関する 勉強や開発をしている • SNS : @kurotaky • ⾳楽が好き、ドラマーです。
SUZURI 3
SUZURI 4
SUZURI 5
6 https://jab.tokyo/
7
8 アジェンダ 1. リザバーコンピューティングについて 2. エコーステートネットワーク概要 3. まとめ
リザバーコンピューティングについて • 時系列データの入力に対する 複雑な動的応答を生成する計算手法 • 波紋パターンは入力された時系列 情報を表し、リザバーによる状態変化 を分析することで、時系列データを認識 し解析する リザバーコンピューティングとは?
9 水面におはじきを投げ入れると、複雑な波紋が広がる 知 識の森 リザバーコンピューティング , 電子情報通信学会 . 時系列の入力をリザ バーに与えると、入力の 大きさや順序に応じた動 的な波紋のパターンが 生じる
リザバーコンピューティングについて 10 ニューラルネットワークとリザバーコンピューティング
リザバーコンピューティングについて 1986年 Jordan ネットワーク 1989年 Real-Time Recurrent Learning (RTRL) 1990年
Elman ネットワーク Backpropagation Through Time (BPTT) 1997年 ⻑‧短期記憶 (LSTM) 2001年 エコーステートネットワーク (ESN) 2002年 リキッドステートマシン (LSM) 2014年 ゲート付き回帰型ユニット (GRU) Recurrent Neural Network の歴史 11 リザバーコンピューティング|森北出版株式会社 , p.9 表1.1を参考に作成 Jaeger, GMD Report. 148, 34 (2001) Maass, et al. Neural Computation. 14, 11 (2002)
リザバーコンピューティングについて 深層学習 (Deep Neural Network) との違い 12 学習コスト 計算性能 リザバー
コンピューティング ESN、LSM リザバーコンピューティング|森北出版株式会社 , p.6 図 1.3 を参考に作成 線形学習器 線形回帰モデルなど ディープラーニングモ デル RNN、LSTM、GRU
エコーステートネットワーク概要 エコーステートネットワーク (ESN) 13 Introduction to Next Generation Reservoir Computing
https://www.youtube.com/watch?v=wbH4En-k5Gs
エコーステートネットワーク概要 Input Layer と Reservoir 14 入力層とリザバーの接続 ランダムで固定された 重みを持つ接続 リザバー内のニューロン
ランダムで固定された リカレント接続
エコーステートネットワーク概要 出力層 トレーニング可能な 出力重みを持つ Reservoir と Output Layer 15
エコーステートネットワーク概要 リッジ回帰の出⼒重みの導出過程 16 損失関数 損失関数を微分 Woutについて解く 正規化項 を加えた自己相関行列の逆行列を計算
エコーステートネットワーク概要 リードアウトのみ調整 ESNでは、リザバーから出力層への重みだけ調整される。その ため計算が速く、消費電力も少ない → エッジデバイスでの応用、環境に優しい など エコーステートネットワークの特徴 17
エコーステートネットワーク概要 医療: EEG, ECG, EMG, ⼼拍, 眼球運動など 画像: ⼿書き⽂字画像, 動画像
⾳声: 発話, ⾳響, ⾳楽 機械: モーター, ロボット その他にも応⽤例は沢⼭、物理リザバーもある リザバーコンピューティングの応⽤ 18
エコーステートネットワーク概要 サンプルプログラム 19 https://mantas.info/code/simple_esn/ Mackey-Glass 方程式 複雑で非線形な時間系列データをどの程度正確に予 測できるかをテスト
エコーステートネットワーク概要 サンプルプログラム 20
エコーステートネットワーク概要 resSizeでの⽐較 21 resSize = 50 resSize = 500
エコーステートネットワーク概要 resSize = 1000 22
エコーステートネットワーク概要 resSize = 10 23
エコーステートネットワーク概要 resSize = 10000 24 計算がおわりません! (発表に間に合わなさそうなので止めた)
エコーステートネットワーク概要 - ⾮線形系 - ⾮線形な振る舞いを⽰し、複雑なパターンや信号を処理 - エコーステート性 - リザバーの現在の状態は過去の入力に影響される -
時間が経つにつれ、その影響は消失 - ⾼次元 - より複雑なパターンの処理をおこなうため リザバーコンピューティングに求められる特性 25
まとめ • リザバーコンピューティングの概要 • エコーステートネットワークについて • リザバーコンピューティングの応⽤例について • サンプルプログラムを実⾏しての考察 まとめ
26
27 Thank you! We’re hiring!