Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゼロからわかるリザバーコンピューティング
Search
Yuta Kurotaki
December 14, 2023
Research
1
1.9k
ゼロからわかるリザバーコンピューティング
コードとカクテル:GMOペパボのAIナイト - LT大忘年会 -
https://gmo.connpass.com/event/304045/
Yuta Kurotaki
December 14, 2023
Tweet
Share
More Decks by Yuta Kurotaki
See All by Yuta Kurotaki
GMOペパボのSUZURIを支えるAIOpsの実践
kurotaky
0
120
CTO Night & Day 2024 Product Feedback Lunch
kurotaky
1
160
SUZURI DX 2023
kurotaky
1
200
How GitHub Copilot Transforms Development Productivity
kurotaky
18
14k
The story of repairing my junk keyboard with The kinT keyboard controller
kurotaky
0
1.7k
DevRel_Japan CONFERENCE 2023
kurotaky
1
2k
ctoa-wakate-01-company-introduction
kurotaky
0
310
Ethereum for Ruby
kurotaky
2
2k
NFTコンテンツでオリジナルグッズ作成を支える技術
kurotaky
1
200
Other Decks in Research
See All in Research
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
170
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
440
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
230
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
450
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
300
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
120
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
5
2.5k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
450
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
130
高畑鬼界ヶ島と重文・称名寺本薬師如来像の来歴を追って/kikaigashima
kochizufan
0
110
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
150
Featured
See All Featured
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
40
Abbi's Birthday
coloredviolet
0
4.2k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
120
Optimizing for Happiness
mojombo
379
70k
Accessibility Awareness
sabderemane
0
31
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
590
Are puppies a ranking factor?
jonoalderson
0
2.6k
Darren the Foodie - Storyboard
khoart
PRO
1
2.1k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
The agentic SEO stack - context over prompts
schlessera
0
580
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
330
Transcript
1 ゼロからわかる リザバーコンピューティング 黒瀧 悠太 コードとカクテル:GMOペパボのAIナイト - LT⼤忘年会 - 2023.12.14
2 ⾃⼰紹介 黒瀧 悠太 Yuta Kurotaki • SUZURI事業部シニアエンジニアリングリード • GMOインターネットグループ
デベロッパーエキスパート • リザバーコンピューティングに関する 勉強や開発をしている • SNS : @kurotaky • ⾳楽が好き、ドラマーです。
SUZURI 3
SUZURI 4
SUZURI 5
6 https://jab.tokyo/
7
8 アジェンダ 1. リザバーコンピューティングについて 2. エコーステートネットワーク概要 3. まとめ
リザバーコンピューティングについて • 時系列データの入力に対する 複雑な動的応答を生成する計算手法 • 波紋パターンは入力された時系列 情報を表し、リザバーによる状態変化 を分析することで、時系列データを認識 し解析する リザバーコンピューティングとは?
9 水面におはじきを投げ入れると、複雑な波紋が広がる 知 識の森 リザバーコンピューティング , 電子情報通信学会 . 時系列の入力をリザ バーに与えると、入力の 大きさや順序に応じた動 的な波紋のパターンが 生じる
リザバーコンピューティングについて 10 ニューラルネットワークとリザバーコンピューティング
リザバーコンピューティングについて 1986年 Jordan ネットワーク 1989年 Real-Time Recurrent Learning (RTRL) 1990年
Elman ネットワーク Backpropagation Through Time (BPTT) 1997年 ⻑‧短期記憶 (LSTM) 2001年 エコーステートネットワーク (ESN) 2002年 リキッドステートマシン (LSM) 2014年 ゲート付き回帰型ユニット (GRU) Recurrent Neural Network の歴史 11 リザバーコンピューティング|森北出版株式会社 , p.9 表1.1を参考に作成 Jaeger, GMD Report. 148, 34 (2001) Maass, et al. Neural Computation. 14, 11 (2002)
リザバーコンピューティングについて 深層学習 (Deep Neural Network) との違い 12 学習コスト 計算性能 リザバー
コンピューティング ESN、LSM リザバーコンピューティング|森北出版株式会社 , p.6 図 1.3 を参考に作成 線形学習器 線形回帰モデルなど ディープラーニングモ デル RNN、LSTM、GRU
エコーステートネットワーク概要 エコーステートネットワーク (ESN) 13 Introduction to Next Generation Reservoir Computing
https://www.youtube.com/watch?v=wbH4En-k5Gs
エコーステートネットワーク概要 Input Layer と Reservoir 14 入力層とリザバーの接続 ランダムで固定された 重みを持つ接続 リザバー内のニューロン
ランダムで固定された リカレント接続
エコーステートネットワーク概要 出力層 トレーニング可能な 出力重みを持つ Reservoir と Output Layer 15
エコーステートネットワーク概要 リッジ回帰の出⼒重みの導出過程 16 損失関数 損失関数を微分 Woutについて解く 正規化項 を加えた自己相関行列の逆行列を計算
エコーステートネットワーク概要 リードアウトのみ調整 ESNでは、リザバーから出力層への重みだけ調整される。その ため計算が速く、消費電力も少ない → エッジデバイスでの応用、環境に優しい など エコーステートネットワークの特徴 17
エコーステートネットワーク概要 医療: EEG, ECG, EMG, ⼼拍, 眼球運動など 画像: ⼿書き⽂字画像, 動画像
⾳声: 発話, ⾳響, ⾳楽 機械: モーター, ロボット その他にも応⽤例は沢⼭、物理リザバーもある リザバーコンピューティングの応⽤ 18
エコーステートネットワーク概要 サンプルプログラム 19 https://mantas.info/code/simple_esn/ Mackey-Glass 方程式 複雑で非線形な時間系列データをどの程度正確に予 測できるかをテスト
エコーステートネットワーク概要 サンプルプログラム 20
エコーステートネットワーク概要 resSizeでの⽐較 21 resSize = 50 resSize = 500
エコーステートネットワーク概要 resSize = 1000 22
エコーステートネットワーク概要 resSize = 10 23
エコーステートネットワーク概要 resSize = 10000 24 計算がおわりません! (発表に間に合わなさそうなので止めた)
エコーステートネットワーク概要 - ⾮線形系 - ⾮線形な振る舞いを⽰し、複雑なパターンや信号を処理 - エコーステート性 - リザバーの現在の状態は過去の入力に影響される -
時間が経つにつれ、その影響は消失 - ⾼次元 - より複雑なパターンの処理をおこなうため リザバーコンピューティングに求められる特性 25
まとめ • リザバーコンピューティングの概要 • エコーステートネットワークについて • リザバーコンピューティングの応⽤例について • サンプルプログラムを実⾏しての考察 まとめ
26
27 Thank you! We’re hiring!