Upgrade to Pro — share decks privately, control downloads, hide ads and more …

LCG20

 LCG20

Leonardo Collado-Torres

August 30, 2023
Tweet

More Decks by Leonardo Collado-Torres

Other Decks in Science

Transcript

  1. @lcolladotor lcolladotor.github.io lcolladotor.github.io/bioc_team_ds Studying the human prefrontal cortex transcriptome at

    different resolutions Leonardo Collado Torres, Investigator #LCG20 at LCG-UNAM 󰐏 August 31 2023 Slides available at speakerdeck.com/lcolladotor
  2. • 2017: ◦ idea en BioC2017 e inicio de la

    fundación de CDSB • 2018: ◦ primer taller ^_^, con instructores de Bioconductor: Martin Morgan & Benilton Carvalho • 2019: ◦ BioC2019: apoyo a solicitud de becas ◦ Taller con materiales adaptados de RStudio • 2020: ◦ regutools: primer paquete en Bioconductor ◦ Taller con RStudio & Bioconductor • 2021: ◦ primera vez con 2 talleres https://comunidadbioinfo.github.io/
  3. @lcolladotor lcolladotor.github.io lcolladotor.github.io/bioc_team_ds Studying the human prefrontal cortex transcriptome at

    different resolutions Leonardo Collado Torres, Investigator #LCG20 at LCG-UNAM 󰐏 August 31 2023 Slides available at speakerdeck.com/lcolladotor
  4. Zoom in: base pair resolution Jeff Leek @jtleek Ph.D. advisor

    Andrew E Jaffe @andrewejaffe Ph.D. co-advisor
  5. Fetal Infant Child Teen Adult 50+ 6 / group, N

    = 36 Discovery data Postmortem Human Brain Samples Fetal Infant Child Teen Adult 50+ 6 / group, N = 36 Replication data Andrew E Jaffe @andrewejaffe Ph.D. co-advisor Developmental regulation of human cortex transcription and its clinical relevance at single base resolution doi.org/10.1038/nn.3898 github.com/leekgroup/libd_n36
  6. doi.org/10.1038/nn.3898 Developmental regulation of human cortex transcription and its clinical

    relevance at single base resolution github.com/leekgroup/libd_n36
  7. Zoom in: more data! Ben Langmead @BenLangmead Abhinav Nellore @nellore

    (GitHub) Christopher Wilks @chrisnwilks Shannon Ellis @Shannon_E_Ellis Kasper Daniel Hansen @KasperDHansen Andrew E Jaffe @andrewejaffe Ph.D. co-advisor + LIBD former boss Jeff Leek @jtleek Ph.D. advisor
  8. expression data for ~70,000 human samples samples phenotypes ? GTEx

    N=9,962 TCGA N=11,284 SRA N=49,848 samples expression estimates gene exon junctions ERs Answer meaningful questions about human biology and expression slide adapted from Shannon Ellis Reproducible RNA-seq analysis using #recount2 + Improving the value of public RNA-seq expression data by phenotype prediction doi.org/10.1038/nbt.3838 doi.org/10.1093/nar/gky102
  9. recount3: over 700,000 human and mouse RNA-seq samples #recount3: summaries

    and queries for large-scale RNA-seq expression and splicing Christopher Wilks @chrisnwilks research.libd.org/recount3-docs/ doi.org/10.1186/s13059-021-02533-6
  10. Zoom in: snRNA-seq → deconvolution of bulk RNA-seq Matthew N

    Tran @mattntran Kristen R Maynard @kr_maynard Louise A Huuki-Myers @lahuuki Keri Martinowich @martinowk Stephanie C Hicks @stephaniehicks
  11. What is Deconvolution? • Inferring the composition of different cell

    types in a bulk RNA-seq data Louise A Huuki-Myers @lahuuki
  12. 10x snRNA-seq Reference Data AMY DLPFC HPC NAc sACC Astro

    1638 782 1170 1099 907 Endo 31 0 0 0 0 Macro 0 10 0 22 0 Micro 1168 388 1126 492 784 Mural 39 18 43 0 0 Oligo 6080 5455 5912 6134 4584 OPC 1459 572 838 669 911 Tcell 31 9 26 0 0 Excit 443 2388 623 0 4163 Inhib 3117 1580 366 11476 3974 @mattntran Matthew N Tran doi.org/10.1016/j.neuron.2021.09.001
  13. 1vAll Markers vs. Mean Ratio Markers 26 Louise A Huuki-Myers

    @lahuuki research.libd.org/DeconvoBuddies/
  14. 1vAll Markers vs. Mean Ratio Markers 27 Louise A Huuki-Myers

    @lahuuki research.libd.org/DeconvoBuddies/
  15. Which Method is the Most Accurate? • Benchmarking shows that

    different methods perform best on different data sets (Cobos et al, Nature Communications, 2020) • Benchmarking results from different papers on “real” data ◦ MuSiC paper: MuSiC > NNLS > BSEQ-sx > CIBERSORT ▪ Pancreatic Islet: Beta cells vs. HbA1c (Fig 2a) ◦ Bisque paper: Bisque > MuSiC > CIBERSORT ▪ DLPFC: Microglia vs. Braak stage, Neuron vs. Cognitive diagnostic category (Fig 4) ◦ SCDC paper: SCDC > MuSiC > Bisque > DWLS > CIBERSORT ▪ Pancreatic Islet: Beta cells vs. HbA1c (Fig 4b) ◦ Cobos benchmark: DWLS > MuSiC > Bisque > deconvoSeq ▪ Human PMBC flow sorted (Fig 7) 29 Louise A Huuki-Myers @lahuuki
  16. Mean Proportions By Region: Tran et al, bioRxiv, 2020 (5

    donors, 6 cell types) Louise A Huuki-Myers @lahuuki
  17. Peric = Mural + Endo Mean Proportions By Region: Tran

    et al, Neuron, 2021 (8 donors, 10 cell types) Louise A Huuki-Myers @lahuuki
  18. #deconvochallenge Challenges and opportunities to computationally deconvolve heterogeneous tissue with

    varying cell sizes using single cell RNA-sequencing datasets doi.org/10.48550/arXiv.2305.06501 Sean Maden @MadenSean
  19. Zoom in: spatial omics Kristen R Maynard @kr_maynard Keri Martinowich

    @martinowk Stephanie C Hicks @stephaniehicks Andrew E Jaffe @andrewejaffe Stephanie C Page @CerceoPage
  20. Visium Platform for Spatial Gene Expression Image from 10x Genomics

    - A slide contains 4 capture areas, each full of thousands of 55um-wide “spots” (often containing 1-10 cells) - Unique barcodes in each spot bind to particular genes; after sequencing, gene expression can be tied back to exact spots, forming a spatial map Kristen R. Maynard 38
  21. 2 pairs spatial adjacent replicates x subject = 12 sections

    39 Subject 1 Subject 2 Subject 3 Adjacent spatial replicates (0μm) Adjacent spatial replicates (300μm) PCP4 Maynard, Collado-Torres, et al, Nat Neuro, 2021
  22. bioconductor.org/packages/spatialLIBD Pardo et al, 2022 DOI 10.1186/s12864-022-08601-w Maynard, Collado-Torres, 2021

    DOI 10.1038/s41593-020-00787-0 Brenda Pardo Abby Spangler @PardoBree @abspangler Louise A. Huuki-Myers @lahuuki
  23. DOI: 10.1038/s41593-020-00787-0 twitter.com/lcolladotor/status/1233661576433061888 from 2020-02-29 DOI 10.1093/bioinformatics/btac299 Since Feb 2020

    spatialLIBD::fetch_data() provides access to SpatialExperiment R/Bioconductor objects Stephanie C Hicks @stephaniehicks Lukas M Weber @lmweber
  24. Different Resolutions of BayesSpace Clustering k = number of clusters

    • k=2: separate white vs. grey matter • k=9: best reiterated histological layers • k=16: data-driven optimal k based on fast H+ statistic 46 More Clusters = More Complexity doi.org/10.1101/2023.02.15.528722
  25. Spatial Registration Adds Anatomical Context • Validate detection of laminar

    structure • Correlate enrichment t-statistics for top marker genes of reference ◦ Cluster vs. manual annotation • Annotate with strongly associated histological layer 47 Sp k D d ~L doi.org/10.1101/2023.02.15.528722
  26. Spatial Registration of Spatial Domains • Map SpDs to Maynard

    et al. manual annotated layers • Highlight most strongly associated histological layer to add biological context 48 doi.org/10.1101/2023.02.15.528722
  27. Identify Layer Associated Neuron Populations 49 • Apply Spatial Registration

    with manual layers • 13 layer-level cell types ◦ Assign Excitatory Neurons histological layers ◦ Pool other cell type groups Kelsey D Montgomery
  28. Spot Deconvolution 51 Cell 1 Cell 2 … Cell N

    Gene 1 0 0 … 0 Gene 2 2 5 … 3 … … … … … Gene i 1 0 … 0 Spot 1 Spot 2 … Spot M Gene 1 1 0 … 3 Gene 2 0 1 … 0 … … … … … Gene j 4 2 … 2 Astro Excit … Inhib Spot 1 1 1 … 1 Spot 2 … … … … … … Spot M 1 0 … 2 Single- Nucleus Spatial Deconvolved Results Spot 1 Nicholas J Eagles @Nick-Eagles (GitHub)
  29. Existing Spot Deconvolution Software - Explored 3 novel software methods

    from the literature Software name Overall approach Input Cell Counts Output Tangram (Biancalani et al.) Mapping individual cells Every spot Integer counts Cell2location (Kleshchevnikov et al.) Matching gene-expression profile Average across spots Decimal counts SPOTlight (Elosua-Bayes et al.) Matching gene-expression profile Not used Proportions 52 Excit L5 Counts
  30. Benchmarking Spot Deconvolution Software: Theory - How do we measure

    performance or accuracy of cell-type predictions? - Make orthogonal measurements*: image-derived counts - Leverage prior knowledge: neurons localize to gray matter? - Self-consistency of results: broad vs. fine cell-type results 53 Nicholas J Eagles @Nick-Eagles (GitHub) doi.org/10.1101/2023.02.15.528722
  31. Visium Spatial Proteogenomics (Visium-SPG) Visium-SPG = Visium SRT + immunofluorescence

    (using identical tissue samples) Sang Ho Kwon @sanghokwon17
  32. Visium Spatial Proteogenomics (Visium-SPG) - Gene expression captured like ordinary

    Visium - Multi-channel fluorescent images captured of the same tissue - Channels measure proteins marking for specific cell types Kristen R. Maynard 56 Sang Ho Kwon Visium-SPG = Visium SRT + immunofluorescence (using identical tissue samples) Fluorescent Protein Cell Type TMEM119 Microglia Neun Neurons OLIG2 Oligodendrocytes GFAP Astrocytes
  33. Benchmark Summary 59 Metric Tangram Cell2location SPOTlight Metric Type Avg.

    cor (spot-level) 0.31 0.30 0.21 Orthogonal measurements Avg. RMSE (spot-level) 1.35 1.24 1.3 Orthogonal measurements Overall prop.: (KL Div.) 0.44 0.49 0.41 Orthogonal measurements Overall prop.: (cor.) 0.46 0.37 0.47 Orthogonal measurements Overall prop.: (RMSE) 3020 3890 3040 Orthogonal measurements Histological mapping 0.69 0.77 0.23 Leverage known biology Broad vs. layer (cor.) 1.00 0.77 -0.36 Self-consistency of results Broad vs. layer (RMSE) 102 4200 4220 Self-consistency of results
  34. Viewing Spot Deconvolution Results: Samui Browser - View: - Fluorescence

    channels - Spot deconvo results - Segmented cells - Gene expression - Interactive - Quickly zoom/scroll - Full-resolution images samuibrowser.com/from?url=data2.loopybrowser.com/VisiumIF/&s=Br2720_Ant_IF&s=Br6432_Ant_IF&s=Br6522_Ant_IF&s=Br8667_Post_IF Sriworarat, 2023. 60
  35. Viewing Spot Deconvolution Results: spatialLIBD apps - View: - spot

    deconvolution results - spatial domains/ clusters - gene expression - Huge amount of aesthetic customization 61 https://libd.shinyapps.io/spatialDLPFC_Visium_SPG/
  36. How Spot Deconvolution Results Were Used A. Better characterize unsupervised

    spatial domains B. Cell-cell communication; cell-type-informed ligand-receptor interactions in the context of schizophrenia risk A 62 Boyi Guo Melissa Grant-Peters
  37. Visium spatial clustering works for variables with high % variance

    explained. But what about other ones? DOI: 10.1038/s41593-020-00787-0
  38. AD pathology signal is too small to detect by spatially-resolved

    gene expression alone research.libd.org/Visium_SPG_AD/
  39. sc/snRNA-seq QC metrics such as # detected genes, # UMI,

    mitochondria expression % are likely biologically related!
  40. Having more data is useful to provide context! Here 4

    new samples have low sequencing saturation (outliers) but are within range of good samples from other studies
  41. Having more data is useful to provide context! Those 4

    samples have great median UMI counts per spot ^_^
  42. Software keeps evolving and as leaders in the field we

    aim to use the best methods 74 Moses, L., Pachter, L. Museum of spatial transcriptomics. Nat Methods 19, 534–546 (2022). https://doi.org/10.1038/s41592-022-01409-2
  43. The Development Process - Making a module - New, experimental

    software can change dramatically (function and syntax) between versions - Promotes collaboration by allowing two researchers to share exact code and instantly run software without special set-up SpatialExperiment release 3.14 SpatialExperiment devel 3.15 module load tangram/1.0.2 module load cell2location/0.8a0 module load spagcn/1.2.0 https://github.com/LieberInstitute/jhpce_mod_source https://github.com/LieberInstitute/jhpce_module_config Nicholas J Eagles @Nick-Eagles (GitHub)
  44. The Development Process - Regular interaction with software authors to

    clarify functionality and report bugs - Documentation for code and author responsiveness on GitHub can be critical in successfully applying software to our data Nicholas J Eagles @Nick-Eagles (GitHub)
  45. More challenges ahead Working with multiple capture areas per tissue

    Nicholas J Eagles @Nick-Eagles (GitHub) Prashanthi Ravichandran @prashanthi-ravichandran (GH) Spot diameter error: ~1.8 → ~1.1 Another pair: ~2.8 → ~0.76
  46. lcolladotor.github.io/#projects • Every assay has caveats • We re-use tricks:

    think adding 0, multiplying by 1 • It nearly always takes a team • Data sharing accelerates science + democratizes access to it • Zooming in allows us to reduce the heterogeneity • We can learn from each other: from uniformly processing our data & re-using it → replicate / validate?
  47. @MadhaviTippani Madhavi Tippani @HeenaDivecha Heena R Divecha @lmwebr Lukas M

    Weber @stephaniehicks Stephanie C Hicks @abspangler Abby Spangler @martinowk Keri Martinowich @CerceoPage Stephanie C Page @kr_maynard Kristen R Maynard @lcolladotor Leonardo Collado-Torres @Nick-Eagles (GH) Nicholas J Eagles Kelsey D Montgomery Sang Ho Kwon Image Analysis Expression Analysis Data Generation Thomas M Hyde @lahuuki Louise A Huuki-Myers @BoyiGuo Boyi Guo @mattntran Matthew N Tran @sowmyapartybun Sowmya Parthiban Slides available at speakerdeck.com /lcolladotor + Many more LIBD, JHU, and external collaborators @mgrantpeters Melissa Grant-Peters @prashanthi-ravichandran (GH) Prashanthi Ravichandran