Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
3D magnetic inversion by planting anomalous den...
Search
Leonardo Uieda
May 15, 2013
Science
1
460
3D magnetic inversion by planting anomalous densities
Leonardo Uieda
May 15, 2013
Tweet
Share
More Decks by Leonardo Uieda
See All by Leonardo Uieda
PhD defense
leouieda
0
1.7k
Inversão gravimétrica do relevo da Moho em coordenadas esféricas
leouieda
0
120
Fatiando a Terra: construindo uma base para ensino e pesquisa de geofísica
leouieda
0
1k
Modelagem e inversão em coordenadas esféricas na gravimetria
leouieda
0
120
Gravity inversion in spherical coordinates using tesseroids
leouieda
0
540
Modelagem gravimétrica em coordenadas esféricas
leouieda
0
160
Iron ore interpretation using gravity-gradient inversions in the Carajás, Brazil
leouieda
0
330
Rapid 3D inversion of gravity and gravity gradient data to test geologic hypotheses
leouieda
1
370
Inversão 3D de campos potenciais em coordenadas esféricas - Parte 1: Modelagem direta
leouieda
2
140
Other Decks in Science
See All in Science
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
PRO
0
130
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
180
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
480
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
860
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
Vibecoding for Product Managers
ibknadedeji
0
120
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
460
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
470
My Little Monster
juzishuu
0
410
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
1
220
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
100k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
KATA
mclloyd
PRO
33
15k
Accessibility Awareness
sabderemane
0
31
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
200
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Thoughts on Productivity
jonyablonski
73
5k
4 Signs Your Business is Dying
shpigford
187
22k
Statistics for Hackers
jakevdp
799
230k
Done Done
chrislema
186
16k
Transcript
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous magnetization 2013 AGU Meeting of the Americas
(Short) History of planting inversion • Uieda and Barbosa (early
2012) based on René (1986) • For gravity and gradients • Deal with computational difficulties – A lot of data – Large meshes • A way to input geologic/geophysical information • Improvements at SEG 2012
In a nutshell the data
In a nutshell the data
In a nutshell the data the seeds (known physical properties)
In a nutshell inversion
In a nutshell Estimate geometry!
In a nutshell (~ 1 min) Estimate geometry!
In a nutshell fits! (~ 1 min) Estimate geometry!
Behind the scenes (aka, Methodology)
the data the “truth”
the seed
the predicted data
the neighbors
add the best
the new predicted add the best
the new predicted the new neighbors add the best
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
the same shape
the fattening
the fattening
the fattening
None
None
None
None
the final solution
the final solution fits!
Why it grows that way • Choice of the best:
1. Not random 2. 3. Smallest goal function φ=[∑ i (d i o−d i )2 ]1 2 Γ=ψ+μθ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed = scalar μ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed ψ=[∑ i (α d i o−d i )2]1 2 shape-of-anomaly function (René, 1986) scale factor between observed and predicted = scalar μ
Real data (Morro do Engenho, Brazil)
Previous interpretation ME for short
Geologic profile Forward modeling After Dutra and Marangoni (2009) Layered
complex Magnetization Dunite center Know the magnetization
The data
The data ME
The data ME A2
The data ME A2 ?
The data ME A2 ? same as ME?
Test this hypothesis
The seeds
N
N
N Outcropping
None
None
None
Poor fit!
Get rid of “tentacles”
Use data weights
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 )
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
with weights N
N
with weights without weights
N still outcropping
N still outcropping still poor fit
hypothesis
Conclusion • Fast geometry estimation • Known magnetization • Seed
position • Data weights = more robust • Magnetization of A2 ≠ ME – Probably higher
Developed open-source fatiando.org
What we're working on (seed positioning)
the model the data
Single seed at the top
the not very good estimate
the not very good estimate
Extract new seeds from estimate
the much better estimate
the much better estimate