Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
3D magnetic inversion by planting anomalous den...
Search
Leonardo Uieda
May 15, 2013
Science
1
470
3D magnetic inversion by planting anomalous densities
Leonardo Uieda
May 15, 2013
Tweet
Share
More Decks by Leonardo Uieda
See All by Leonardo Uieda
PhD defense
leouieda
0
1.7k
Inversão gravimétrica do relevo da Moho em coordenadas esféricas
leouieda
0
130
Fatiando a Terra: construindo uma base para ensino e pesquisa de geofísica
leouieda
0
1k
Modelagem e inversão em coordenadas esféricas na gravimetria
leouieda
0
120
Gravity inversion in spherical coordinates using tesseroids
leouieda
0
540
Modelagem gravimétrica em coordenadas esféricas
leouieda
0
160
Iron ore interpretation using gravity-gradient inversions in the Carajás, Brazil
leouieda
0
330
Rapid 3D inversion of gravity and gravity gradient data to test geologic hypotheses
leouieda
1
370
Inversão 3D de campos potenciais em coordenadas esféricas - Parte 1: Modelagem direta
leouieda
2
140
Other Decks in Science
See All in Science
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1.1k
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
1.7k
2025-05-31-pycon_italia
sofievl
0
140
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
660
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
32k
Celebrate UTIG: Staff and Student Awards 2025
utig
0
790
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
Vibecoding for Product Managers
ibknadedeji
0
130
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
160
(2025) Balade en cyclotomie
mansuy
0
450
Distributional Regression
tackyas
0
340
Hakonwa-Quaternion
hiranabe
1
170
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
The Cult of Friendly URLs
andyhume
79
6.8k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
440
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
My Coaching Mixtape
mlcsv
0
49
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Exploring anti-patterns in Rails
aemeredith
2
250
Google's AI Overviews - The New Search
badams
0
910
Transcript
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous magnetization 2013 AGU Meeting of the Americas
(Short) History of planting inversion • Uieda and Barbosa (early
2012) based on René (1986) • For gravity and gradients • Deal with computational difficulties – A lot of data – Large meshes • A way to input geologic/geophysical information • Improvements at SEG 2012
In a nutshell the data
In a nutshell the data
In a nutshell the data the seeds (known physical properties)
In a nutshell inversion
In a nutshell Estimate geometry!
In a nutshell (~ 1 min) Estimate geometry!
In a nutshell fits! (~ 1 min) Estimate geometry!
Behind the scenes (aka, Methodology)
the data the “truth”
the seed
the predicted data
the neighbors
add the best
the new predicted add the best
the new predicted the new neighbors add the best
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
the same shape
the fattening
the fattening
the fattening
None
None
None
None
the final solution
the final solution fits!
Why it grows that way • Choice of the best:
1. Not random 2. 3. Smallest goal function φ=[∑ i (d i o−d i )2 ]1 2 Γ=ψ+μθ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed = scalar μ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed ψ=[∑ i (α d i o−d i )2]1 2 shape-of-anomaly function (René, 1986) scale factor between observed and predicted = scalar μ
Real data (Morro do Engenho, Brazil)
Previous interpretation ME for short
Geologic profile Forward modeling After Dutra and Marangoni (2009) Layered
complex Magnetization Dunite center Know the magnetization
The data
The data ME
The data ME A2
The data ME A2 ?
The data ME A2 ? same as ME?
Test this hypothesis
The seeds
N
N
N Outcropping
None
None
None
Poor fit!
Get rid of “tentacles”
Use data weights
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 )
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
with weights N
N
with weights without weights
N still outcropping
N still outcropping still poor fit
hypothesis
Conclusion • Fast geometry estimation • Known magnetization • Seed
position • Data weights = more robust • Magnetization of A2 ≠ ME – Probably higher
Developed open-source fatiando.org
What we're working on (seed positioning)
the model the data
Single seed at the top
the not very good estimate
the not very good estimate
Extract new seeds from estimate
the much better estimate
the much better estimate