Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
3D magnetic inversion by planting anomalous den...
Search
Leonardo Uieda
May 15, 2013
Science
1
450
3D magnetic inversion by planting anomalous densities
Leonardo Uieda
May 15, 2013
Tweet
Share
More Decks by Leonardo Uieda
See All by Leonardo Uieda
PhD defense
leouieda
0
1.6k
Inversão gravimétrica do relevo da Moho em coordenadas esféricas
leouieda
0
92
Fatiando a Terra: construindo uma base para ensino e pesquisa de geofísica
leouieda
0
990
Modelagem e inversão em coordenadas esféricas na gravimetria
leouieda
0
100
Gravity inversion in spherical coordinates using tesseroids
leouieda
0
500
Modelagem gravimétrica em coordenadas esféricas
leouieda
0
140
Iron ore interpretation using gravity-gradient inversions in the Carajás, Brazil
leouieda
0
310
Rapid 3D inversion of gravity and gravity gradient data to test geologic hypotheses
leouieda
1
340
Inversão 3D de campos potenciais em coordenadas esféricas - Parte 1: Modelagem direta
leouieda
2
130
Other Decks in Science
See All in Science
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
370
mathematics of indirect reciprocity
yohm
1
110
統計学入門講座 第4回スライド
techmathproject
0
120
データベース01: データベースを使わない世界
trycycle
PRO
1
580
データベース02: データベースの概念
trycycle
PRO
2
690
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
340
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.5k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
110
SpatialBiologyWestCoastUS2024
lcolladotor
0
110
Transformers are Universal in Context Learners
gpeyre
0
800
Explanatory material
yuki1986
0
190
私たちのプロダクトにとってのよいテスト/good test for our products
camel_404
0
290
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
780
Embracing the Ebb and Flow
colly
85
4.7k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.5k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.4k
Transcript
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous magnetization 2013 AGU Meeting of the Americas
(Short) History of planting inversion • Uieda and Barbosa (early
2012) based on René (1986) • For gravity and gradients • Deal with computational difficulties – A lot of data – Large meshes • A way to input geologic/geophysical information • Improvements at SEG 2012
In a nutshell the data
In a nutshell the data
In a nutshell the data the seeds (known physical properties)
In a nutshell inversion
In a nutshell Estimate geometry!
In a nutshell (~ 1 min) Estimate geometry!
In a nutshell fits! (~ 1 min) Estimate geometry!
Behind the scenes (aka, Methodology)
the data the “truth”
the seed
the predicted data
the neighbors
add the best
the new predicted add the best
the new predicted the new neighbors add the best
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
the same shape
the fattening
the fattening
the fattening
None
None
None
None
the final solution
the final solution fits!
Why it grows that way • Choice of the best:
1. Not random 2. 3. Smallest goal function φ=[∑ i (d i o−d i )2 ]1 2 Γ=ψ+μθ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed = scalar μ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed ψ=[∑ i (α d i o−d i )2]1 2 shape-of-anomaly function (René, 1986) scale factor between observed and predicted = scalar μ
Real data (Morro do Engenho, Brazil)
Previous interpretation ME for short
Geologic profile Forward modeling After Dutra and Marangoni (2009) Layered
complex Magnetization Dunite center Know the magnetization
The data
The data ME
The data ME A2
The data ME A2 ?
The data ME A2 ? same as ME?
Test this hypothesis
The seeds
N
N
N Outcropping
None
None
None
Poor fit!
Get rid of “tentacles”
Use data weights
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 )
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
with weights N
N
with weights without weights
N still outcropping
N still outcropping still poor fit
hypothesis
Conclusion • Fast geometry estimation • Known magnetization • Seed
position • Data weights = more robust • Magnetization of A2 ≠ ME – Probably higher
Developed open-source fatiando.org
What we're working on (seed positioning)
the model the data
Single seed at the top
the not very good estimate
the not very good estimate
Extract new seeds from estimate
the much better estimate
the much better estimate