Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
3D magnetic inversion by planting anomalous den...
Search
Leonardo Uieda
May 15, 2013
Science
1
450
3D magnetic inversion by planting anomalous densities
Leonardo Uieda
May 15, 2013
Tweet
Share
More Decks by Leonardo Uieda
See All by Leonardo Uieda
PhD defense
leouieda
0
1.6k
Inversão gravimétrica do relevo da Moho em coordenadas esféricas
leouieda
0
110
Fatiando a Terra: construindo uma base para ensino e pesquisa de geofísica
leouieda
0
1k
Modelagem e inversão em coordenadas esféricas na gravimetria
leouieda
0
120
Gravity inversion in spherical coordinates using tesseroids
leouieda
0
520
Modelagem gravimétrica em coordenadas esféricas
leouieda
0
150
Iron ore interpretation using gravity-gradient inversions in the Carajás, Brazil
leouieda
0
320
Rapid 3D inversion of gravity and gravity gradient data to test geologic hypotheses
leouieda
1
360
Inversão 3D de campos potenciais em coordenadas esféricas - Parte 1: Modelagem direta
leouieda
2
130
Other Decks in Science
See All in Science
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
170
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.1k
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.2k
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
260
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
100
機械学習 - DBSCAN
trycycle
PRO
0
1.1k
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
860
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
190
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
690
Ignite の1年間の軌跡
ktombow
0
160
研究って何だっけ / What is Research?
ks91
PRO
1
130
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Scaling GitHub
holman
463
140k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
What's in a price? How to price your products and services
michaelherold
246
12k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Code Review Best Practice
trishagee
72
19k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Transcript
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous magnetization 2013 AGU Meeting of the Americas
(Short) History of planting inversion • Uieda and Barbosa (early
2012) based on René (1986) • For gravity and gradients • Deal with computational difficulties – A lot of data – Large meshes • A way to input geologic/geophysical information • Improvements at SEG 2012
In a nutshell the data
In a nutshell the data
In a nutshell the data the seeds (known physical properties)
In a nutshell inversion
In a nutshell Estimate geometry!
In a nutshell (~ 1 min) Estimate geometry!
In a nutshell fits! (~ 1 min) Estimate geometry!
Behind the scenes (aka, Methodology)
the data the “truth”
the seed
the predicted data
the neighbors
add the best
the new predicted add the best
the new predicted the new neighbors add the best
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
the same shape
the fattening
the fattening
the fattening
None
None
None
None
the final solution
the final solution fits!
Why it grows that way • Choice of the best:
1. Not random 2. 3. Smallest goal function φ=[∑ i (d i o−d i )2 ]1 2 Γ=ψ+μθ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed = scalar μ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed ψ=[∑ i (α d i o−d i )2]1 2 shape-of-anomaly function (René, 1986) scale factor between observed and predicted = scalar μ
Real data (Morro do Engenho, Brazil)
Previous interpretation ME for short
Geologic profile Forward modeling After Dutra and Marangoni (2009) Layered
complex Magnetization Dunite center Know the magnetization
The data
The data ME
The data ME A2
The data ME A2 ?
The data ME A2 ? same as ME?
Test this hypothesis
The seeds
N
N
N Outcropping
None
None
None
Poor fit!
Get rid of “tentacles”
Use data weights
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 )
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
with weights N
N
with weights without weights
N still outcropping
N still outcropping still poor fit
hypothesis
Conclusion • Fast geometry estimation • Known magnetization • Seed
position • Data weights = more robust • Magnetization of A2 ≠ ME – Probably higher
Developed open-source fatiando.org
What we're working on (seed positioning)
the model the data
Single seed at the top
the not very good estimate
the not very good estimate
Extract new seeds from estimate
the much better estimate
the much better estimate