Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
3D magnetic inversion by planting anomalous den...
Search
Leonardo Uieda
May 15, 2013
Science
1
450
3D magnetic inversion by planting anomalous densities
Leonardo Uieda
May 15, 2013
Tweet
Share
More Decks by Leonardo Uieda
See All by Leonardo Uieda
PhD defense
leouieda
0
1.6k
Inversão gravimétrica do relevo da Moho em coordenadas esféricas
leouieda
0
100
Fatiando a Terra: construindo uma base para ensino e pesquisa de geofísica
leouieda
0
990
Modelagem e inversão em coordenadas esféricas na gravimetria
leouieda
0
110
Gravity inversion in spherical coordinates using tesseroids
leouieda
0
510
Modelagem gravimétrica em coordenadas esféricas
leouieda
0
150
Iron ore interpretation using gravity-gradient inversions in the Carajás, Brazil
leouieda
0
310
Rapid 3D inversion of gravity and gravity gradient data to test geologic hypotheses
leouieda
1
350
Inversão 3D de campos potenciais em coordenadas esféricas - Parte 1: Modelagem direta
leouieda
2
130
Other Decks in Science
See All in Science
mathematics of indirect reciprocity
yohm
1
140
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
140
MCMCのR-hatは分散分析である
moricup
0
360
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.8k
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
330
SpatialBiologyWestCoastUS2024
lcolladotor
0
140
学術講演会中央大学学員会府中支部
tagtag
0
270
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
170
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
260
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
910
Ignite の1年間の軌跡
ktombow
0
130
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
280
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.4k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Faster Mobile Websites
deanohume
307
31k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
Adopting Sorbet at Scale
ufuk
77
9.4k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Transcript
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous magnetization 2013 AGU Meeting of the Americas
(Short) History of planting inversion • Uieda and Barbosa (early
2012) based on René (1986) • For gravity and gradients • Deal with computational difficulties – A lot of data – Large meshes • A way to input geologic/geophysical information • Improvements at SEG 2012
In a nutshell the data
In a nutshell the data
In a nutshell the data the seeds (known physical properties)
In a nutshell inversion
In a nutshell Estimate geometry!
In a nutshell (~ 1 min) Estimate geometry!
In a nutshell fits! (~ 1 min) Estimate geometry!
Behind the scenes (aka, Methodology)
the data the “truth”
the seed
the predicted data
the neighbors
add the best
the new predicted add the best
the new predicted the new neighbors add the best
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
the same shape
the fattening
the fattening
the fattening
None
None
None
None
the final solution
the final solution fits!
Why it grows that way • Choice of the best:
1. Not random 2. 3. Smallest goal function φ=[∑ i (d i o−d i )2 ]1 2 Γ=ψ+μθ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed = scalar μ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed ψ=[∑ i (α d i o−d i )2]1 2 shape-of-anomaly function (René, 1986) scale factor between observed and predicted = scalar μ
Real data (Morro do Engenho, Brazil)
Previous interpretation ME for short
Geologic profile Forward modeling After Dutra and Marangoni (2009) Layered
complex Magnetization Dunite center Know the magnetization
The data
The data ME
The data ME A2
The data ME A2 ?
The data ME A2 ? same as ME?
Test this hypothesis
The seeds
N
N
N Outcropping
None
None
None
Poor fit!
Get rid of “tentacles”
Use data weights
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 )
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
with weights N
N
with weights without weights
N still outcropping
N still outcropping still poor fit
hypothesis
Conclusion • Fast geometry estimation • Known magnetization • Seed
position • Data weights = more robust • Magnetization of A2 ≠ ME – Probably higher
Developed open-source fatiando.org
What we're working on (seed positioning)
the model the data
Single seed at the top
the not very good estimate
the not very good estimate
Extract new seeds from estimate
the much better estimate
the much better estimate