Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
3D magnetic inversion by planting anomalous den...
Search
Leonardo Uieda
May 15, 2013
Science
1
440
3D magnetic inversion by planting anomalous densities
Leonardo Uieda
May 15, 2013
Tweet
Share
More Decks by Leonardo Uieda
See All by Leonardo Uieda
PhD defense
leouieda
0
1.5k
Inversão gravimétrica do relevo da Moho em coordenadas esféricas
leouieda
0
77
Fatiando a Terra: construindo uma base para ensino e pesquisa de geofísica
leouieda
0
960
Modelagem e inversão em coordenadas esféricas na gravimetria
leouieda
0
83
Gravity inversion in spherical coordinates using tesseroids
leouieda
0
480
Modelagem gravimétrica em coordenadas esféricas
leouieda
0
130
Iron ore interpretation using gravity-gradient inversions in the Carajás, Brazil
leouieda
0
280
Rapid 3D inversion of gravity and gravity gradient data to test geologic hypotheses
leouieda
1
320
Inversão 3D de campos potenciais em coordenadas esféricas - Parte 1: Modelagem direta
leouieda
2
120
Other Decks in Science
See All in Science
Coqで選択公理を形式化してみた
soukouki
0
170
Machine Learning for Materials (Lecture 3)
aronwalsh
0
970
Lyme Disease
uni_of_nomi
0
120
成果物の構造を考慮したテキスト埋め込みによるトレーサビリティリンク回復手法の提案
toskamiya
0
110
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
200
Machine Learning for Materials (Lecture 4)
aronwalsh
0
770
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
160
作業領域内の障害物を回避可能なバイナリマニピュレータの設計 / Design of binary manipulator avoiding obstacles in workspace
konakalab
0
150
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
130
Raccoon Roundworm
uni_of_nomi
0
140
2024-06-16-pydata_london
sofievl
0
480
学術講演会中央大学学員会八王子支部
tagtag
0
210
Featured
See All Featured
A Philosophy of Restraint
colly
202
16k
In The Pink: A Labor of Love
frogandcode
139
22k
[RailsConf 2023] Rails as a piece of cake
palkan
49
4.7k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
125
18k
The Straight Up "How To Draw Better" Workshop
denniskardys
231
130k
A designer walks into a library…
pauljervisheath
201
24k
Why You Should Never Use an ORM
jnunemaker
PRO
53
9k
Faster Mobile Websites
deanohume
304
30k
How STYLIGHT went responsive
nonsquared
94
5.1k
Teambox: Starting and Learning
jrom
131
8.7k
Become a Pro
speakerdeck
PRO
24
4.9k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.8k
Transcript
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous magnetization 2013 AGU Meeting of the Americas
(Short) History of planting inversion • Uieda and Barbosa (early
2012) based on René (1986) • For gravity and gradients • Deal with computational difficulties – A lot of data – Large meshes • A way to input geologic/geophysical information • Improvements at SEG 2012
In a nutshell the data
In a nutshell the data
In a nutshell the data the seeds (known physical properties)
In a nutshell inversion
In a nutshell Estimate geometry!
In a nutshell (~ 1 min) Estimate geometry!
In a nutshell fits! (~ 1 min) Estimate geometry!
Behind the scenes (aka, Methodology)
the data the “truth”
the seed
the predicted data
the neighbors
add the best
the new predicted add the best
the new predicted the new neighbors add the best
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
the same shape
the fattening
the fattening
the fattening
None
None
None
None
the final solution
the final solution fits!
Why it grows that way • Choice of the best:
1. Not random 2. 3. Smallest goal function φ=[∑ i (d i o−d i )2 ]1 2 Γ=ψ+μθ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed = scalar μ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed ψ=[∑ i (α d i o−d i )2]1 2 shape-of-anomaly function (René, 1986) scale factor between observed and predicted = scalar μ
Real data (Morro do Engenho, Brazil)
Previous interpretation ME for short
Geologic profile Forward modeling After Dutra and Marangoni (2009) Layered
complex Magnetization Dunite center Know the magnetization
The data
The data ME
The data ME A2
The data ME A2 ?
The data ME A2 ? same as ME?
Test this hypothesis
The seeds
N
N
N Outcropping
None
None
None
Poor fit!
Get rid of “tentacles”
Use data weights
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 )
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
with weights N
N
with weights without weights
N still outcropping
N still outcropping still poor fit
hypothesis
Conclusion • Fast geometry estimation • Known magnetization • Seed
position • Data weights = more robust • Magnetization of A2 ≠ ME – Probably higher
Developed open-source fatiando.org
What we're working on (seed positioning)
the model the data
Single seed at the top
the not very good estimate
the not very good estimate
Extract new seeds from estimate
the much better estimate
the much better estimate