Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
3D magnetic inversion by planting anomalous den...
Search
Leonardo Uieda
May 15, 2013
Science
1
440
3D magnetic inversion by planting anomalous densities
Leonardo Uieda
May 15, 2013
Tweet
Share
More Decks by Leonardo Uieda
See All by Leonardo Uieda
PhD defense
leouieda
0
1.6k
Inversão gravimétrica do relevo da Moho em coordenadas esféricas
leouieda
0
83
Fatiando a Terra: construindo uma base para ensino e pesquisa de geofísica
leouieda
0
970
Modelagem e inversão em coordenadas esféricas na gravimetria
leouieda
0
87
Gravity inversion in spherical coordinates using tesseroids
leouieda
0
490
Modelagem gravimétrica em coordenadas esféricas
leouieda
0
130
Iron ore interpretation using gravity-gradient inversions in the Carajás, Brazil
leouieda
0
290
Rapid 3D inversion of gravity and gravity gradient data to test geologic hypotheses
leouieda
1
330
Inversão 3D de campos potenciais em coordenadas esféricas - Parte 1: Modelagem direta
leouieda
2
130
Other Decks in Science
See All in Science
Online Feedback Optimization
floriandoerfler
0
720
Causal discovery based on non-Gaussianity and nonlinearity
sshimizu2006
0
210
証明支援系LEANに入門しよう
unaoya
0
530
拡散モデルの原理紹介
brainpadpr
3
5.4k
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
170
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
240
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
390
240510 COGNAC LabChat
kazh
0
170
Snowflakeによる統合バイオインフォマティクス
ktatsuya
PRO
0
560
ベイズ最適化をゼロから
brainpadpr
2
970
機械学習を支える連続最適化
nearme_tech
PRO
1
210
butterfly_effect/butterfly_effect_in-house
florets1
1
130
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
113
50k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
230
52k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
Speed Design
sergeychernyshev
25
730
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Into the Great Unknown - MozCon
thekraken
34
1.6k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
4 Signs Your Business is Dying
shpigford
182
22k
RailsConf 2023
tenderlove
29
970
Transcript
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous magnetization 2013 AGU Meeting of the Americas
(Short) History of planting inversion • Uieda and Barbosa (early
2012) based on René (1986) • For gravity and gradients • Deal with computational difficulties – A lot of data – Large meshes • A way to input geologic/geophysical information • Improvements at SEG 2012
In a nutshell the data
In a nutshell the data
In a nutshell the data the seeds (known physical properties)
In a nutshell inversion
In a nutshell Estimate geometry!
In a nutshell (~ 1 min) Estimate geometry!
In a nutshell fits! (~ 1 min) Estimate geometry!
Behind the scenes (aka, Methodology)
the data the “truth”
the seed
the predicted data
the neighbors
add the best
the new predicted add the best
the new predicted the new neighbors add the best
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
the same shape
the fattening
the fattening
the fattening
None
None
None
None
the final solution
the final solution fits!
Why it grows that way • Choice of the best:
1. Not random 2. 3. Smallest goal function φ=[∑ i (d i o−d i )2 ]1 2 Γ=ψ+μθ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed = scalar μ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed ψ=[∑ i (α d i o−d i )2]1 2 shape-of-anomaly function (René, 1986) scale factor between observed and predicted = scalar μ
Real data (Morro do Engenho, Brazil)
Previous interpretation ME for short
Geologic profile Forward modeling After Dutra and Marangoni (2009) Layered
complex Magnetization Dunite center Know the magnetization
The data
The data ME
The data ME A2
The data ME A2 ?
The data ME A2 ? same as ME?
Test this hypothesis
The seeds
N
N
N Outcropping
None
None
None
Poor fit!
Get rid of “tentacles”
Use data weights
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 )
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
with weights N
N
with weights without weights
N still outcropping
N still outcropping still poor fit
hypothesis
Conclusion • Fast geometry estimation • Known magnetization • Seed
position • Data weights = more robust • Magnetization of A2 ≠ ME – Probably higher
Developed open-source fatiando.org
What we're working on (seed positioning)
the model the data
Single seed at the top
the not very good estimate
the not very good estimate
Extract new seeds from estimate
the much better estimate
the much better estimate