Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
3D magnetic inversion by planting anomalous den...
Search
Leonardo Uieda
May 15, 2013
Science
1
450
3D magnetic inversion by planting anomalous densities
Leonardo Uieda
May 15, 2013
Tweet
Share
More Decks by Leonardo Uieda
See All by Leonardo Uieda
PhD defense
leouieda
0
1.6k
Inversão gravimétrica do relevo da Moho em coordenadas esféricas
leouieda
0
85
Fatiando a Terra: construindo uma base para ensino e pesquisa de geofísica
leouieda
0
980
Modelagem e inversão em coordenadas esféricas na gravimetria
leouieda
0
92
Gravity inversion in spherical coordinates using tesseroids
leouieda
0
490
Modelagem gravimétrica em coordenadas esféricas
leouieda
0
130
Iron ore interpretation using gravity-gradient inversions in the Carajás, Brazil
leouieda
0
300
Rapid 3D inversion of gravity and gravity gradient data to test geologic hypotheses
leouieda
1
330
Inversão 3D de campos potenciais em coordenadas esféricas - Parte 1: Modelagem direta
leouieda
2
130
Other Decks in Science
See All in Science
Healthcare Innovation through Business Entrepreneurship
clintwinters
0
190
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.4k
Online Feedback Optimization
floriandoerfler
0
890
ベイズ最適化をゼロから
brainpadpr
2
1.1k
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
2.8k
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
4
290
Causal discovery based on non-Gaussianity and nonlinearity
sshimizu2006
0
230
小杉考司(専修大学)
kosugitti
2
610
Celebrate UTIG: Staff and Student Awards 2024
utig
0
580
観察研究における因果推論
nearme_tech
PRO
1
160
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
2
130
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
880
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
22
1.3k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
133
33k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
GitHub's CSS Performance
jonrohan
1030
460k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Transcript
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous densities 2013 AGU Meeting of the Americas
Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional - Brazil
3D magnetic inversion by planting anomalous magnetization 2013 AGU Meeting of the Americas
(Short) History of planting inversion • Uieda and Barbosa (early
2012) based on René (1986) • For gravity and gradients • Deal with computational difficulties – A lot of data – Large meshes • A way to input geologic/geophysical information • Improvements at SEG 2012
In a nutshell the data
In a nutshell the data
In a nutshell the data the seeds (known physical properties)
In a nutshell inversion
In a nutshell Estimate geometry!
In a nutshell (~ 1 min) Estimate geometry!
In a nutshell fits! (~ 1 min) Estimate geometry!
Behind the scenes (aka, Methodology)
the data the “truth”
the seed
the predicted data
the neighbors
add the best
the new predicted add the best
the new predicted the new neighbors add the best
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
the same shape
the fattening
the fattening
the fattening
None
None
None
None
the final solution
the final solution fits!
Why it grows that way • Choice of the best:
1. Not random 2. 3. Smallest goal function φ=[∑ i (d i o−d i )2 ]1 2 Γ=ψ+μθ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed = scalar μ
Γ=ψ+μθ θ=∑ k l k regularizing function compactness distance of
added cells to seed ψ=[∑ i (α d i o−d i )2]1 2 shape-of-anomaly function (René, 1986) scale factor between observed and predicted = scalar μ
Real data (Morro do Engenho, Brazil)
Previous interpretation ME for short
Geologic profile Forward modeling After Dutra and Marangoni (2009) Layered
complex Magnetization Dunite center Know the magnetization
The data
The data ME
The data ME A2
The data ME A2 ?
The data ME A2 ? same as ME?
Test this hypothesis
The seeds
N
N
N Outcropping
None
None
None
Poor fit!
Get rid of “tentacles”
Use data weights
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 )
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
Use data weights φ=[∑ i w i (d i o−d
i )2]1 2 w i =exp (−[(x i −x s )2+( y i −y s )2]2 σ4 ) s = closest seed
with weights N
N
with weights without weights
N still outcropping
N still outcropping still poor fit
hypothesis
Conclusion • Fast geometry estimation • Known magnetization • Seed
position • Data weights = more robust • Magnetization of A2 ≠ ME – Probably higher
Developed open-source fatiando.org
What we're working on (seed positioning)
the model the data
Single seed at the top
the not very good estimate
the not very good estimate
Extract new seeds from estimate
the much better estimate
the much better estimate