Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
27
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
LINE 實習分享 & 國際黑客松參賽分享
line_developers_tw
PRO
0
10
在 GCP 運用 Parse 全家餐管理那堆 AI 應用的資料
line_developers_tw
PRO
0
17
40歲的我會給20歲的自己,關於軟體開發的7個建議
line_developers_tw
PRO
0
7k
從零到一:轉碼仔的實習攻略
line_developers_tw
PRO
0
17
如何在團隊發揮數據影響力: 以電商資料科學家為例
line_developers_tw
PRO
1
40
做Data超讚的 誰懂?
line_developers_tw
PRO
0
24
iOS Live Activity: Opportunities & Challenges
line_developers_tw
PRO
1
110
掌握 Feature Toggle 與 OpenFeature 規範
line_developers_tw
PRO
0
220
用 AI 和 LINE Bot 簡化生活:讓圖片告訴你何時該忙!-- LINE 工作坊
line_developers_tw
PRO
0
740
Other Decks in Technology
See All in Technology
.NET 最新アップデート ~ AI とクラウド時代のアプリモダナイゼーション
chack411
0
200
Building Scalable Backend Services with Firebase
wisdommatt
0
110
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
6
54k
チームが毎日小さな変化と適応を続けたら1年間でスケール可能なアジャイルチームができた話 / Building a Scalable Agile Team
kakehashi
2
230
Kotlin Multiplatformのポテンシャル
recruitengineers
PRO
2
150
駆け出しリーダーとしての第一歩〜開発チームとの新しい関わり方〜 / Beginning Journey as Team Leader
kaonavi
0
120
【NGK2025S】動物園(PINTO_model_zoo)に遊びに行こう
kazuhitotakahashi
0
220
The future we create with our own MVV
matsukurou
0
2k
Git scrapingで始める継続的なデータ追跡 / Git Scraping
ohbarye
5
480
Goで実践するBFP
hiroyaterui
1
120
SpiderPlus & Co. エンジニア向け会社紹介資料
spiderplus_cb
0
880
実践! ソフトウェアエンジニアリングの価値の計測 ── Effort、Output、Outcome、Impact
nomuson
0
2k
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Making Projects Easy
brettharned
116
6k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
Thoughts on Productivity
jonyablonski
68
4.4k
The Cult of Friendly URLs
andyhume
78
6.1k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
Site-Speed That Sticks
csswizardry
2
270
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
RailsConf 2023
tenderlove
29
970
Building an army of robots
kneath
302
45k
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None