Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
34
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
LINE 實習分享 & 國際黑客松參賽分享
line_developers_tw
PRO
0
19
在 GCP 運用 Parse 全家餐管理那堆 AI 應用的資料
line_developers_tw
PRO
0
22
40歲的我會給20歲的自己,關於軟體開發的7個建議
line_developers_tw
PRO
0
7.6k
從零到一:轉碼仔的實習攻略
line_developers_tw
PRO
0
34
如何在團隊發揮數據影響力: 以電商資料科學家為例
line_developers_tw
PRO
1
45
做Data超讚的 誰懂?
line_developers_tw
PRO
0
33
iOS Live Activity: Opportunities & Challenges
line_developers_tw
PRO
1
120
掌握 Feature Toggle 與 OpenFeature 規範
line_developers_tw
PRO
0
240
用 AI 和 LINE Bot 簡化生活:讓圖片告訴你何時該忙!-- LINE 工作坊
line_developers_tw
PRO
0
770
Other Decks in Technology
See All in Technology
君も受託系GISエンジニアにならないか
sudataka
2
430
30分でわかる『アジャイルデータモデリング』
hanon52_
9
2.6k
Developers Summit 2025 浅野卓也(13-B-7 LegalOn Technologies)
legalontechnologies
PRO
0
710
Swiftの “private” を テストする / Testing Swift "private"
yutailang0119
0
130
オブザーバビリティの観点でみるAWS / AWS from observability perspective
ymotongpoo
8
1.5k
The Future of SEO: The Impact of AI on Search
badams
0
190
速くて安いWebサイトを作る
nishiharatsubasa
10
12k
OpenID BizDay#17 KYC WG活動報告(法人) / 20250219-BizDay17-KYC-legalidentity
oidfj
0
240
2025-02-21 ゆるSRE勉強会 Enhancing SRE Using AI
yoshiiryo1
1
310
エンジニアの育成を支える爆速フィードバック文化
sansantech
PRO
3
1.1k
転生CISOサバイバル・ガイド / CISO Career Transition Survival Guide
kanny
3
970
2024.02.19 W&B AIエージェントLT会 / AIエージェントが業務を代行するための計画と実行 / Algomatic 宮脇
smiyawaki0820
13
3.3k
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
330
Why Our Code Smells
bkeepers
PRO
336
57k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.2k
A designer walks into a library…
pauljervisheath
205
24k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.8k
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None