Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
68
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
NTUAI企業參訪
line_developers_tw
PRO
0
1.7k
Data TECH FRESH企業參訪- Amber
line_developers_tw
PRO
0
3.2k
Data Team 實習分享
line_developers_tw
PRO
0
3.8k
Backend Intern之旅
line_developers_tw
PRO
0
6.9k
清大企業參訪- Ben
line_developers_tw
PRO
0
1.5k
LLM 商品規格萃取大冒險- Vila
line_developers_tw
PRO
0
1.3k
Playwright/MCP/AI -Winter
line_developers_tw
PRO
0
1.4k
LINE EC Product Catalog Development- Rei
line_developers_tw
PRO
0
1.3k
LINE 與 AI 機器人技術應用現況
line_developers_tw
PRO
0
23
Other Decks in Technology
See All in Technology
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
180
AI駆動開発の実践とその未来
eltociear
1
480
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
220
LayerX QA Night#1
koyaman2
0
250
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
17
2.5k
AlmaLinux + KVM + Cockpit で始めるお手軽仮想化基盤 ~ 開発環境などでの利用を想定して ~
koedoyoshida
0
150
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
120
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
3
2k
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
160
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.2k
Kiro を用いたペアプロのススメ
taikis
4
1.6k
株式会社ビザスク_AI__Engineering_Summit_Tokyo_2025_登壇資料.pdf
eikohashiba
1
110
Featured
See All Featured
AI: The stuff that nobody shows you
jnunemaker
PRO
1
12
The SEO identity crisis: Don't let AI make you average
varn
0
36
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
2
2.8k
Context Engineering - Making Every Token Count
addyosmani
9
550
Claude Code のすすめ
schroneko
65
200k
First, design no harm
axbom
PRO
1
1.1k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
25
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
69
Building AI with AI
inesmontani
PRO
1
570
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Amusing Abliteration
ianozsvald
0
69
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None