Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
70
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
Gemini 2025 新功能回顧 LINE Bot 完美結合
line_developers_tw
PRO
0
280
NTUAI企業參訪
line_developers_tw
PRO
0
4.6k
Data TECH FRESH企業參訪- Amber
line_developers_tw
PRO
0
9k
Data Team 實習分享
line_developers_tw
PRO
0
8.4k
Backend Intern之旅
line_developers_tw
PRO
0
13k
清大企業參訪- Ben
line_developers_tw
PRO
0
2.4k
LLM 商品規格萃取大冒險- Vila
line_developers_tw
PRO
0
1.8k
Playwright/MCP/AI -Winter
line_developers_tw
PRO
0
1.8k
LINE EC Product Catalog Development- Rei
line_developers_tw
PRO
0
1.8k
Other Decks in Technology
See All in Technology
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
360
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
100
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
プロポーザルに込める段取り八分
shoheimitani
1
540
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
170
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
460
What happened to RubyGems and what can we learn?
mikemcquaid
0
310
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
1
160
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
250
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
160
Featured
See All Featured
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
Code Review Best Practice
trishagee
74
20k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Testing 201, or: Great Expectations
jmmastey
46
8k
Exploring anti-patterns in Rails
aemeredith
2
250
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
71
Side Projects
sachag
455
43k
A Tale of Four Properties
chriscoyier
162
24k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None