Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
67
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
NTUAI企業參訪
line_developers_tw
PRO
0
760
Data TECH FRESH企業參訪- Amber
line_developers_tw
PRO
0
840
Data Team 實習分享
line_developers_tw
PRO
0
2.6k
Backend Intern之旅
line_developers_tw
PRO
0
5.2k
清大企業參訪- Ben
line_developers_tw
PRO
0
1.3k
LLM 商品規格萃取大冒險- Vila
line_developers_tw
PRO
0
1.2k
Playwright/MCP/AI -Winter
line_developers_tw
PRO
0
1.2k
LINE EC Product Catalog Development- Rei
line_developers_tw
PRO
0
1.2k
LINE 與 AI 機器人技術應用現況
line_developers_tw
PRO
0
17
Other Decks in Technology
See All in Technology
Karate+Database RiderによるAPI自動テスト導入工数をCline+GitLab MCPを使って2割削減を目指す! / 20251206 Kazuki Takahashi
shift_evolve
PRO
1
700
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
300
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
130
Edge AI Performance on Zephyr Pico vs. Pico 2
iotengineer22
0
140
OCI Oracle Database Services新機能アップデート(2025/09-2025/11)
oracle4engineer
PRO
1
110
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
6
1.4k
世界最速級 memcached 互換サーバー作った
yasukata
0
340
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
550
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
150
乗りこなせAI駆動開発の波
eltociear
1
1.1k
regrowth_tokyo_2025_securityagent
hiashisan
0
230
因果AIへの招待
sshimizu2006
0
960
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
9
500
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
4 Signs Your Business is Dying
shpigford
186
22k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None