Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
23
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
在 GCP 運用 Parse 全家餐管理那堆 AI 應用的資料
line_developers_tw
PRO
0
12
40歲的我會給20歲的自己,關於軟體開發的7個建議
line_developers_tw
PRO
0
4.1k
從零到一:轉碼仔的實習攻略
line_developers_tw
PRO
0
10
如何在團隊發揮數據影響力: 以電商資料科學家為例
line_developers_tw
PRO
1
32
做Data超讚的 誰懂?
line_developers_tw
PRO
0
17
iOS Live Activity: Opportunities & Challenges
line_developers_tw
PRO
1
96
掌握 Feature Toggle 與 OpenFeature 規範
line_developers_tw
PRO
0
190
用 AI 和 LINE Bot 簡化生活:讓圖片告訴你何時該忙!-- LINE 工作坊
line_developers_tw
PRO
0
690
Scaling The E-Commerce Recommendation System
line_developers_tw
PRO
0
58
Other Decks in Technology
See All in Technology
AI時代のデータセンターネットワーク
lycorptech_jp
PRO
1
280
マイクロサービスにおける容易なトランザクション管理に向けて
scalar
0
110
GitHub Copilot のテクニック集/GitHub Copilot Techniques
rayuron
24
11k
継続的にアウトカムを生み出し ビジネスにつなげる、 戦略と運営に対するタイミーのQUEST(探求)
zigorou
0
510
【re:Invent 2024 アプデ】 Prompt Routing の紹介
champ
0
140
サーバレスアプリ開発者向けアップデートをキャッチアップしてきた #AWSreInvent #regrowth_fuk
drumnistnakano
0
190
組織に自動テストを書く文化を根付かせる戦略(2024冬版) / Building Automated Test Culture 2024 Winter Edition
twada
PRO
12
3.4k
ブラックフライデーで購入したPixel9で、Gemini Nanoを動かしてみた
marchin1989
1
520
20241220_S3 tablesの使い方を検証してみた
handy
3
250
UI State設計とテスト方針
rmakiyama
2
320
Snowflake女子会#3 Snowpipeの良さを5分で語るよ
lana2548
0
220
新機能VPCリソースエンドポイント機能検証から得られた考察
duelist2020jp
0
210
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
Adopting Sorbet at Scale
ufuk
73
9.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
Being A Developer After 40
akosma
87
590k
Statistics for Hackers
jakevdp
796
220k
Embracing the Ebb and Flow
colly
84
4.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.3k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
It's Worth the Effort
3n
183
28k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Music & Morning Musume
bryan
46
6.2k
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None