Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
59
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
菸酒生在 LINE Taiwan 的後端雙刀流
line_developers_tw
PRO
0
1.1k
讓測試不再 BB! 從 BDD 到 CI/CD, 不靠人力也能 MVP
line_developers_tw
PRO
0
1.1k
DB 醬,嗨!哪泥嘎斯基?
line_developers_tw
PRO
0
1.1k
比起獨自升級 我更喜歡 DevOps 文化 <3
line_developers_tw
PRO
0
1.1k
工具人的一生: 開發很多 AI 工具讓我 慵懶過一生
line_developers_tw
PRO
0
1.1k
從四件事帶你見識見識 事件驅動架構設計 (EDA)
line_developers_tw
PRO
0
980
TODAY 看世界(?) 是我們在看扣啦!
line_developers_tw
PRO
0
1.1k
你想成為什麼樣的開發者?
line_developers_tw
PRO
0
24
研究生的 LINER生活
line_developers_tw
PRO
0
26
Other Decks in Technology
See All in Technology
初めてのAzure FunctionsをClaude Codeで作ってみた / My first Azure Functions using Claude Code
hideakiaoyagi
1
180
Абьюзим random_bytes(). Фёдор Кулаков, разработчик Lamoda Tech
lamodatech
0
280
ObsidianをMCP連携させてみる
ttnyt8701
2
140
エンジニア向け技術スタック情報
kauche
0
110
成立するElixirの再束縛(再代入)可という選択
kubell_hr
0
940
白金鉱業Meetup_Vol.19_PoCはデモで語れ!顧客の本音とインサイトを引き出すソリューション構築
brainpadpr
2
490
VCpp Link and Library - C++ breaktime 2025 Summer
harukasao
0
220
強化されたAmazon Location Serviceによる新機能と開発者体験
dayjournal
2
150
BrainPadプログラミングコンテスト記念LT会2025_社内イベント&問題解説
brainpadpr
0
160
20250623 Findy Lunch LT Brown
3150
0
780
登壇ネタの見つけ方 / How to find talk topics
pinkumohikan
3
290
A2Aのクライアントを自作する
rynsuke
1
150
Featured
See All Featured
A better future with KSS
kneath
239
17k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Facilitating Awesome Meetings
lara
54
6.4k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Into the Great Unknown - MozCon
thekraken
39
1.9k
Automating Front-end Workflow
addyosmani
1370
200k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Unsuck your backbone
ammeep
671
58k
Building an army of robots
kneath
306
45k
Producing Creativity
orderedlist
PRO
346
40k
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None