Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Enhanced EC Recommendations: Trustworthy Valida...
Search
LINE Developers Taiwan
PRO
September 23, 2024
Technology
0
68
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for Two-Tower Model
Event: iThome Hello World Dev Conference
Speaker: Dan Chen
LINE Developers Taiwan
PRO
September 23, 2024
Tweet
Share
More Decks by LINE Developers Taiwan
See All by LINE Developers Taiwan
NTUAI企業參訪
line_developers_tw
PRO
0
1.3k
Data TECH FRESH企業參訪- Amber
line_developers_tw
PRO
0
2.4k
Data Team 實習分享
line_developers_tw
PRO
0
3.4k
Backend Intern之旅
line_developers_tw
PRO
0
6.3k
清大企業參訪- Ben
line_developers_tw
PRO
0
1.4k
LLM 商品規格萃取大冒險- Vila
line_developers_tw
PRO
0
1.3k
Playwright/MCP/AI -Winter
line_developers_tw
PRO
0
1.3k
LINE EC Product Catalog Development- Rei
line_developers_tw
PRO
0
1.3k
LINE 與 AI 機器人技術應用現況
line_developers_tw
PRO
0
21
Other Decks in Technology
See All in Technology
多様なデジタルアイデンティティを攻撃からどうやって守るのか / 20251212
ayokura
0
500
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.1k
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
500
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
210
AIBuildersDay_track_A_iidaxs
iidaxs
3
400
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
960
IAMユーザーゼロの運用は果たして可能なのか
yama3133
2
510
30分であなたをOmniのファンにしてみせます~分析画面のクリック操作をそのままコード化できるAI-ReadyなBIツール~
sagara
0
180
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
250
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
110
SREには開発組織全体で向き合う
koh_naga
0
390
生成AI時代におけるグローバル戦略思考
taka_aki
0
210
Featured
See All Featured
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
0
98
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
200
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
67
Are puppies a ranking factor?
jonoalderson
0
2.3k
It's Worth the Effort
3n
187
29k
We Have a Design System, Now What?
morganepeng
54
7.9k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
86
Tell your own story through comics
letsgokoyo
0
740
Claude Code のすすめ
schroneko
65
200k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1k
Transcript
None
Enhanced EC Recommendations: Trustworthy Validation with Large Language Models for
Two-Tower Model EC Data Dev / Data Scientists Dan Chen
Dan LINE Taiwan EC Dev - Data Scientis Work Experience
Side Project
01 02 03 04 Evaluation Framework Offline & Online Evaluation
LLM on Recommendation What is Trustworthy 05 Q&A CONTENT
Why it’s so important 01 What is Trustworthy
Element of trustworthy 特點項目文字 特點項目 Trustworthy 特點項目文字 特點項目 特點項目文字 特點項目
Four Perspective 特點項目文字 特點項目 Trustworthy Recommendation 特點項目文字 特點項目 特點項目文字 特點項目
Data Preparation Data Representation Recommendation Generation Performance Evaluation
How to Correctly Evaluate AI 02 Evaluation Framework
Two - Stage Recommendation system Brickmaster Scalable Scenario-wise KPI -
Oriented Trustworthy
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to truly comprehensive understand performance Evaluation Framework (1/2)
How to Correctly Evaluate AI 03 Offline & Online Evaluation
Key point to show how your algorithms can contribute to
your business Offline Evaluation
Key point to show how your algorithms can contribute to
your business Online Evaluation
Avoid pitfalls In Practice If experiment isn’t’ significant ?? Sample
ratio mismatch ?? Novelty effect ?? Key point to show how your algorithms can contribute to your business A/B test
Case – EC Shop recommendation
04 LLM On Recommendation
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Recommendation with LLM - Feature Engineering: Text embedding generation -
How to evaluate embedding (probing): RankMe / α-ReQ Metrincs
Evaluate & Challenge 05 Conclusion
Conclusion Business Value OpenAI, Claude, Gemini XGBoost or OpenSource 來源:https://zh.wikipedia.org/zh-
tw/%E7%BE%8E%E5%9C%8B%E9%9A%8A%E9%95%B72%EF%BC%9A%E9%85%B7%E5%AF%9 2%E6%88%B0%E5%A3%AB 來源:https://images.app.goo.gl/HCygtJVtoPaU2KgX6
Conclusion & Challenge 1. Data Quality 2. Multiple – Metrics
evaluation 3. Conduct A/B test Experiment 4. Human Perception Evaluation Challenge
Q&A 聯絡資訊 (Linkedin – Dan Chen)
None
None