Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
rでgoogle_analyticsデータ解析~グラフィックス編~ #TechLunch
Search
Livesense Inc.
PRO
April 23, 2014
Technology
0
63
rでgoogle_analyticsデータ解析~グラフィックス編~ #TechLunch
2011/06/29(水) @ Livesense TechLunch
発表者:福田 絵里
Livesense Inc.
PRO
April 23, 2014
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
27新卒_総合職採用_会社説明資料
livesense
PRO
0
83
27新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
0
3.6k
株式会社リブセンス・転職会議 採用候補者様向け資料
livesense
PRO
0
76
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.6k
データ基盤の負債解消のためのリプレイス
livesense
PRO
0
470
26新卒_総合職採用_会社説明資料
livesense
PRO
0
12k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
42k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
13k
中途セールス職_会社説明資料
livesense
PRO
0
270
Other Decks in Technology
See All in Technology
OSSで50の競合と戦うためにやったこと
yamadashy
3
740
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
Digitization部 紹介資料
sansan33
PRO
1
5.6k
ローカルLLMとLINE Botの組み合わせ その2(EVO-X2でgpt-oss-120bを利用) / LINE DC Generative AI Meetup #7
you
PRO
0
130
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.8k
LLMプロダクトの信頼性を上げるには?LLM Observabilityによる、対話型音声AIアプリケーションの安定運用
ivry_presentationmaterials
0
720
[VPoE Global Summit] サービスレベル目標による信頼性への投資最適化
satos
0
190
Wasmの気になる最新情報
askua
0
170
Claude Code Subagents 再入門 ~cc-sddの実装で学んだこと~
gotalab555
10
17k
CNCFの視点で捉えるPlatform Engineering - 最新動向と展望 / Platform Engineering from the CNCF Perspective
hhiroshell
0
110
それでも私が品質保証プロセスを作り続ける理由 #テストラジオ / Why I still continue to create QA process
pineapplecandy
0
150
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
14k
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
It's Worth the Effort
3n
187
28k
Practical Orchestrator
shlominoach
190
11k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Done Done
chrislema
185
16k
The Pragmatic Product Professional
lauravandoore
36
7k
Typedesign – Prime Four
hannesfritz
42
2.8k
Scaling GitHub
holman
463
140k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Transcript
RでGoogleAnalyticsデータ解析 ~グラフィックス編~ Eri Fukuda 2011/06/29
Contents 主目的 Rを利用して、Google Analytics Data Export APIからデータを取り出 し、統計解析を行う。 今回の目標 Rを利用して、Analyticsデータのグラフィック化する。
1. デバイスと関数 2. データのグラフィック化 3. おまけ
デバイスと関数 作図デバイス:グラフを出力するウィンドウ 作図関数:グラフを出力する関数 高水準作図関数 ← 要データ 低水準作図関数 ← データ不必要
対話的作図関数(作図デバイス上で直接編集)
ArbeitStock(PC版)の日にち毎の訪問者数取得(Firefox 利用者に限定) install.packages("RCurl", repos = "http://cran.md.tsukuba.ac.jp") install.packages("XML", repos = "http://cran.md.tsukuba.ac.jp")
library(RGoogleAnalytics) ga <- RGoogleAnalytics() options(RCurlOptions = list(capath = system.file("CurlSSL", "cacert.pem", package = "RCurl"), ssl.verifypeer = FALSE)) ga$SetCredentials("INSERT_USER_NAME", "INSERT_PASSWORD") profiles <- ga$GetProfileData() query <- QueryBuilder() query$Init(start.date = "2011-03-01", end.date = "2011-03-31", dimensions = "ga:date", metrics = "ga:visits", sort = "ga:date", filters = "ga:browser=~^Firefox", table.id = "ga:15300579") ga.data <- ga$GetReportData(query) ga.data$data ArbeitStock(PC版)のプロファイルID 訪問者数 日にちごと Firefox利用者に絞り込み
ga:date ga:visits 1 20110301 1932 2 20110302 1776 3 20110303
1713 4 20110304 1636 5 20110305 1111 6 20110306 1179 7 20110307 1774 8 20110308 1722 9 20110309 1690 10 20110310 1577 11 20110311 1071 12 20110312 608 13 20110313 706 14 20110314 961 15 20110315 1166 16 20110316 1186 17 20110317 1187 18 20110318 1163 19 20110319 1007 20 20110320 988 21 20110321 1261 22 20110322 1589 23 20110323 1541 24 20110324 1562 25 20110325 1476 26 20110326 1172 27 20110327 1205 28 20110328 1785 29 20110329 1779 30 20110330 1798 31 20110331 1784 ArbeitStock(PC版)の日にち毎の訪問者数取得(Firefox 利用者に限定)
作図の標準的な関数:plot() オプション:pch, col, type, main, lwd, xlim, ylim, etc...
おまけ
画像をバイナリデータとして読むこともでき、読み込み後は行列とし て扱うことが可能。 パッケージ:readBin, Bitmap, rimage, 等 library(rimage) img <- read.jpeg("livesense.jpg")
plot(img) write(img, "liveImg.dat") jpgから、datへ plot( rgb2grey(img) ) plot(equalize(img)) plot( maxImg( rgb2grey(img) ) ) plot( minImg( rgb2grey(img) ) ) plot( normalize( sobel(img) ) ) 各種画像加工 • 画像からRファイル書き出し
画像をバイナリデータとして読むこともでき、読み込み後は行列とし て扱うことが可能。 パッケージ:readBin, Bitmap, rimage, 等 library(rimage) img <- read.jpeg("livesense.jpg")
plot(img) write(img, "liveImg.dat") jpgから、datへ plot( rgb2grey(img) ) plot(equalize(img)) plot( maxImg( rgb2grey(img) ) ) plot( minImg( rgb2grey(img) ) ) plot( normalize( sobel(img) ) ) 各種画像加工 グレースケール ヒストグラムの平坦化 最大値フィルタ 最小値フィルタ ソーベルフィルタ • 画像からRファイル書き出し
• TeachingDemos package require(TeachingDemos) plot(dice(1,6)) set.seed(17) faces(matrix(sample(1:1000,128) ,4 ,32) ,main="random
faces") faces2(matrix( runif(18*10), nrow=10), main='random faces2') 統計的概念やRの使用法を学ぶためのパッケージ
• sinx^y=siny^x par(mfrow=c(1,2)) x <- seq(0, 9.5, length=50) y <-
seq(0, 6, length=50) f <- function(x,y) {r <- sin(x^y)} z <- outer(x,y,f) persp(x, y, z, theta = -10, phi = 50, col = "lightblue", ltheta = -120, shade = 0.75, box = T) f <- function(x,y) {r <- sin(y^x)} z <- outer(x,y,f) persp(x, y, z, theta = -10, phi = 50, col = "pink", ltheta = -120, shade = 0.75, box = T) z=sinx^y と z=siny^x のグラフ
RでGoogleAnalyticsデータ解析 ~統計処理編~ 次回テーマ