Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
予測モデル with ベイズの定理 #TechLunch
Search
Livesense Inc.
PRO
April 23, 2014
Technology
0
67
予測モデル with ベイズの定理 #TechLunch
2012/03/21(水) @ Livesense TechLunch
発表者:福田 絵里
Livesense Inc.
PRO
April 23, 2014
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
770
26新卒_総合職採用_会社説明資料
livesense
PRO
0
1.4k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
8.8k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
5k
中途セールス職_会社説明資料
livesense
PRO
0
140
EM候補者向け転職会議説明資料
livesense
PRO
0
58
コロナで失われたノベルティ作成ノウハウを復活させた話
livesense
PRO
0
180
転職会議でGPT-3を活用した企業口コミ要約機能をリリースした話
livesense
PRO
0
1.2k
株式会社リブセンス マッハバイト_プレイブック
livesense
PRO
0
720
Other Decks in Technology
See All in Technology
CysharpのOSS群から見るModern C#の現在地
neuecc
2
3.6k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
110
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
710
Mastering Quickfix
daisuzu
1
150
複雑なState管理からの脱却
sansantech
PRO
1
160
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
200
安心してください、日本語使えますよ―Ubuntu日本語Remix提供休止に寄せて― 2024-11-17
nobutomurata
1
1k
AGIについてChatGPTに聞いてみた
blueb
0
130
日経電子版のStoreKit2フルリニューアル
shimastripe
1
150
SDNという名のデータプレーンプログラミングの歴史
ebiken
PRO
2
130
OCI Vault 概要
oracle4engineer
PRO
0
9.7k
DynamoDB でスロットリングが発生したとき_大盛りver/when_throttling_occurs_in_dynamodb_long
emiki
1
450
Featured
See All Featured
Building Adaptive Systems
keathley
38
2.3k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Thoughts on Productivity
jonyablonski
67
4.3k
What's new in Ruby 2.0
geeforr
343
31k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
How STYLIGHT went responsive
nonsquared
95
5.2k
For a Future-Friendly Web
brad_frost
175
9.4k
Designing the Hi-DPI Web
ddemaree
280
34k
Designing for Performance
lara
604
68k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Ruby is Unlike a Banana
tanoku
97
11k
Transcript
予測モデル with ベイズの定理
•スパムメールか?否か? •携帯電話の買い替えが起こるか? •クレジットカードがどれくらい不正利用されるだろうか? •異性は次にどんな行動を取るか? 未来を予測する 予測モデルの 構築・適用
•会話 予測モデルの構築・適用例 付き合いが長いと、 相手の求めているも のが分かってくる 思った通りの行動を しなかった場合は、再学習 蓄積された データ
参照 登録 相手の表情・ 態度・言葉 発言 予測 モデル 「最近◦◦さんのことがよく分かっ てきた」 = 「最近◦◦さんについて予測モデ ルが出来上がってきた」
•Paul Grahamのスパム対策 → ベイジアンフィルタを考案 予測モデルの構築・適用例 学習量が増えると フィルタの分類精 度が上昇 個々の判定を間違えた
場合には、ユーザが正 しい内容に判定しなお し、再学習 数学モデル 数学モデル ( (ベイズ理論 ベイズ理論) ) スパムメール スパムではない メール トレーニング 用データ 参照 登録 元メール 再学習
未来を予測するための確率論 客観的確率論 主観的確率論 対 ・古典的、頻度主義 ・「このサイコロを無限回ふった ときに1の目が出る頻度」 ・(起こって欲しい事柄の数)/(全 ての可能性の事柄の数) =
確率 ・誰が計算しても同じ確率になる ・1980年代、コンピュータの分野 で盛んに ・ベイズ主義、ベイズの定理利用 ・「次にこのサイコロをふったと きに、1の目が出る確率」 ・確信が持てる度合い=確率 ・1990年代に広まり始める ex) モンティ・ホール問題 http://ishi.blog2.fc2.com/blog-entry-182.html 直感で正しいと思える解答 実際の解答 トーマス・ベイズ (1702年 - 1761年)
•もっとも簡単なベイズの技術 ベイズの定理をそのまま素直に適用したアルゴリズム (ナイーブ←「純粋でありのまま」) ベイズの定理の基本 『ナイーブベイズ』 データ アルゴリズム
モデル 出力 (有益な情報) 信頼度 •データの各属性を独立したものとして扱う データ「顧客」の属性の例:年齢、性別、地域、年収
•膨大なデータを実際的な洞察に変える手段を提供 ナイーブベイズの適用例 ネット関連 クリックストリーム分析、コンテンツの自動分類 自然言語処理 文字解析、文法解析 コールセンター 声の抑揚をマネージャへアラート 資源 石油・ガス・鉱物資源の発見、早期採掘
警察・消防 犯罪・火災の原因分析、予測と阻止 流通 最適な棚割りの発見、需要予測 医薬、医療 新薬開発のコストダウン、疾病の早期発見 宇宙工学 金属材料特性の改良、化学燃料の品質管理
•教師付きモデル (Supervised Model) 既に結果の分かっているデータを「教師」として、構築されるモデル •目的指向型モデル 予測することを目的に作られているモデル ナイーブベイズのモデル モデル 出力 (有益な情報)
信頼度 知見の可視化 知見の信頼度や 価値の評価
•予備法 (精度劣るが高速) ・全データのうち一定の割合を、モデル構築に利用 ・残りのデータを、モデル精度のテストに利用 →誤差率を算出 •相互検証法 (予備法よりも精度良い) ・モデル構築用データ、モデル精度テスト用データをすり替えて、 予備法をn回繰り返す →n個の誤差率が得られ、それらを平均した推定誤差を算出
•ブートストラップ (さらに精度良い) ・モデル構築までは、相互検証法と同じ ・ただしモデルテスト時、誤った予測が行われたデータの重みを調整 →予測精度の向上 ナイーブベイズモデルの精度測定
•クリックストリーム Webサイトの訪問者がページを渡り歩いた「軌跡」 •以下の問題の調査・改善に役立つ 使い勝手(ユーザビリティ)が悪いのはどの要素か? Webサイト全体の構成やナビゲーションに問題はないか? サイト運営者の意図通りに訪問者がサイトを使いこなしているか? など •ソリューション Apache Mahout
(Hadoopを利用し並列演算) HadoopディストリビューションのCDH3 (分析の高速化に貢献) TeradataベースのSingularityプロジェクト (ex. eBay) Coremetrics Analytics (トランスコスモス社販売のアクセス解析ツール) SAS, SPSS Extra : クリックストリーム分析
→次回 ナイーブベイズ実践