Kotlinで機械学習:VGG16モデルで犬猫判断

E9a8393b5ad337ea9103d50169aa6d32?s=47 Lukas
October 23, 2017

 Kotlinで機械学習:VGG16モデルで犬猫判断

Using deeplearning4j to distinguish between Cats and Dogs

E9a8393b5ad337ea9103d50169aa6d32?s=128

Lukas

October 23, 2017
Tweet

Transcript

  1. Kotlinで機械学習 VGG16モデルで犬猫判断 どこでもKotlin #3 2017/10/23 エムスリー株式会社 Lukas Prasuhn

  2. 自己紹介 - M3のSoftware Engineer - 日本歴12年のドイツ人 - Java経験が少ない → いきなりKotlin

    - Kotlin以外の得意言語 - C++ (C++11まで) - PHP5 - Github: https://github.com/lukasjapan - Twitter: @cvguy84 - RaspberryPiをイジるのが好き - モデル1 は 1台 - モデル3 は 3台
  3. (私にとっての)Kotlinとは - めちゃ書きやすいJava - Kotlin/Javaの関係 - KotlinはJavaの考え方より柔らかい - KotlinはJavaの資産を多く使っている -

    Kotlinの目的はJavaを使いやすくするため - Javaを尊敬しながら、Kotlinの利用者が急増
  4. ディープラーニングとは - 機械学習の一種 - ニューラルネットワーク(NN)を使用 - 手法のざっくり説明 - 答えを知っている入力データは大量ある -

    NNに入力データ+それに対する答えを学習させる - 他の入力データに対して答えが出力可能になる 行列計算で答えを出 せる 学習させる時は行列 の値を調整する
  5. VGG16のモデル(NN) - 下記の問題を解くために作られたNN - 入力データは画像 - 答えはラベル1000個に対する「自信度」 - ラベルはimage-net.orgが定義 -

    金魚 - ノートパソコン - 飛行機 - ビーグル - ... - 比較的にシンプルで優秀 - 16レイヤー
  6. ラベルから犬猫判断 - 画像は犬?猫? - image-net.orgのラベルを見たら - Egyptian_cat, Persian_cat, cougar, …

    - French_bulldog, toy_terrier, … - 判断提案1 - cat, dogであるラベル(手動判断)の自信度を見る - 1000個もある - 自信度が低い場合、どうする? - 写真にヒントある? - 骨 → 犬、ネズミ → 猫、... - 判断提案2 - VGG16ラベル → 犬猫関係を学習させる!
  7. 犬猫判断できるNNを作成 - 犬猫写真+答えを大量DL(kaggle.com) - 全写真のVGG16ラベルを判定 - VGG16ラベル+答え(犬、猫)を新NNに学習させる - そして連続判定 -

    写真 → VGG16 → 新NN → 犬、猫の「自信度」 VGG16の1000個ラベル の「自信度」 犬に対する「自信度」 猫に対する「自信度」
  8. ようやくKotlin登場! - 実装は何言語? - 機械学習世界ではPythonが強い - どこでもKotlin! 機械学習分野でもKotlin! - deeplearning4j

    - Javaのディープラーニングライブラリー - Skymind社がサポート(Softbankと共同) - これからPepperに入るかも - 当然だがKotlinで問題なく使える - 公式サンプルコードにも.ktファイルを目撃
  9. deeplearning4jのモデルZOO - 有名なモデルを提供 - VGG16もある - 学習済みモデルがDL可 - 最初の実行時にモデルを裏でDL -

    ~490MB
  10. ここでKotlinの一つのアピールポイント - outputはINDArray型である - deeplearning4j所属ライブラリの行列フォーマット - 扱いにくい(数学視点重視) - 答えは一行の行列で表す -

    Kotlinの拡張関数でList<Double>に置き換える - Kotlinの便利機能は直感的に使える - sort, map, ...
  11. 犬猫NNの実装 - 公式サンプルコードを自分のニーズに合わせて、モデルを作成 - VGG16ラベル+答えで学習させる - 学習済みモデルを保存(Serialize) - 答えは下記のように定義 -

    猫の場合:100%猫、0%犬 - 犬の場合:0%猫、100%犬 https://github.com/lukasjapan catsvsdogsgame
  12. 犬猫判断の実装 - 保存モデルをDeserialize - VGG16モデルで得たラベルを入力 - 犬猫それぞれの自信度出力

  13. デモ(というかゲーム!) - TwitterAPIで #m3kt #catsdogs ハッシュタグを監視 - ツイートのプロフィール写真で犬猫判断を行う - 結果はAPIで呟く

    @cvguy84 - おまけでVGG16モデルの判断も教える - 「自信度」が高くなるプロフィール写真が勝つ ヒント:どうしても勝ちたい場合は、プロフィール写真を犬または猫に変える https://github.com/lukasjapan catsvsdogsgame
  14. 最後に - http://www.fast.aiのディープラーニングコース - 機械学習世界で有名な「Jeremy Howard」が無料提供 - Youtube動画 - プログラマー向け

    - 数学的なことももちろん教えている - Python/Keras/... - 今日の内容はLesson 1+2
  15. #m3kt #catsdogs ぜひ呟いてみてね! https://github.com/lukasjapan catsvsdogsgame