Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kotlinで機械学習:VGG16モデルで犬猫判断
Search
Lukas
October 23, 2017
Technology
0
1.2k
Kotlinで機械学習:VGG16モデルで犬猫判断
Using deeplearning4j to distinguish between Cats and Dogs
Lukas
October 23, 2017
Tweet
Share
More Decks by Lukas
See All by Lukas
Using Rust to Process ILDA (Laser Video) Files
lukasjapan
0
540
Help me, Obi-Wan Kenobi - A webpack tale
lukasjapan
0
170
Controlling a Laser with the Raspberry Pi
lukasjapan
0
460
Making a Template Engine for Kotlin
lukasjapan
0
740
Building a Weather Station with the RaspberryPi
lukasjapan
0
99
サーバーサイドkotlinは怖くない:Kotlin ✖︎ Spring Boot
lukasjapan
0
130
Other Decks in Technology
See All in Technology
「全員プロダクトマネージャー」を実現する、Cursorによる仕様検討の自動運転
applism118
22
12k
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
2
470
ブロックテーマ時代における、テーマの CSS について考える Toro_Unit / 2025.09.13 @ Shinshu WordPress Meetup
torounit
0
130
機械学習を扱うプラットフォーム開発と運用事例
lycorptech_jp
PRO
0
660
Rustから学ぶ 非同期処理の仕組み
skanehira
1
150
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
280
使いやすいプラットフォームの作り方 ー LINEヤフーのKubernetes基盤に学ぶ理論と実践
lycorptech_jp
PRO
1
160
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
500
Codeful Serverless / 一人運用でもやり抜く力
_kensh
7
450
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
270
プラットフォーム転換期におけるGitHub Copilot活用〜Coding agentがそれを加速するか〜 / Leveraging GitHub Copilot During Platform Transition Periods
aeonpeople
1
240
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
260
Featured
See All Featured
How GitHub (no longer) Works
holman
315
140k
Fireside Chat
paigeccino
39
3.6k
Rails Girls Zürich Keynote
gr2m
95
14k
Music & Morning Musume
bryan
46
6.8k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Being A Developer After 40
akosma
90
590k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Building Applications with DynamoDB
mza
96
6.6k
Balancing Empowerment & Direction
lara
3
620
Testing 201, or: Great Expectations
jmmastey
45
7.7k
A Tale of Four Properties
chriscoyier
160
23k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
930
Transcript
Kotlinで機械学習 VGG16モデルで犬猫判断 どこでもKotlin #3 2017/10/23 エムスリー株式会社 Lukas Prasuhn
自己紹介 - M3のSoftware Engineer - 日本歴12年のドイツ人 - Java経験が少ない → いきなりKotlin
- Kotlin以外の得意言語 - C++ (C++11まで) - PHP5 - Github: https://github.com/lukasjapan - Twitter: @cvguy84 - RaspberryPiをイジるのが好き - モデル1 は 1台 - モデル3 は 3台
(私にとっての)Kotlinとは - めちゃ書きやすいJava - Kotlin/Javaの関係 - KotlinはJavaの考え方より柔らかい - KotlinはJavaの資産を多く使っている -
Kotlinの目的はJavaを使いやすくするため - Javaを尊敬しながら、Kotlinの利用者が急増
ディープラーニングとは - 機械学習の一種 - ニューラルネットワーク(NN)を使用 - 手法のざっくり説明 - 答えを知っている入力データは大量ある -
NNに入力データ+それに対する答えを学習させる - 他の入力データに対して答えが出力可能になる 行列計算で答えを出 せる 学習させる時は行列 の値を調整する
VGG16のモデル(NN) - 下記の問題を解くために作られたNN - 入力データは画像 - 答えはラベル1000個に対する「自信度」 - ラベルはimage-net.orgが定義 -
金魚 - ノートパソコン - 飛行機 - ビーグル - ... - 比較的にシンプルで優秀 - 16レイヤー
ラベルから犬猫判断 - 画像は犬?猫? - image-net.orgのラベルを見たら - Egyptian_cat, Persian_cat, cougar, …
- French_bulldog, toy_terrier, … - 判断提案1 - cat, dogであるラベル(手動判断)の自信度を見る - 1000個もある - 自信度が低い場合、どうする? - 写真にヒントある? - 骨 → 犬、ネズミ → 猫、... - 判断提案2 - VGG16ラベル → 犬猫関係を学習させる!
犬猫判断できるNNを作成 - 犬猫写真+答えを大量DL(kaggle.com) - 全写真のVGG16ラベルを判定 - VGG16ラベル+答え(犬、猫)を新NNに学習させる - そして連続判定 -
写真 → VGG16 → 新NN → 犬、猫の「自信度」 VGG16の1000個ラベル の「自信度」 犬に対する「自信度」 猫に対する「自信度」
ようやくKotlin登場! - 実装は何言語? - 機械学習世界ではPythonが強い - どこでもKotlin! 機械学習分野でもKotlin! - deeplearning4j
- Javaのディープラーニングライブラリー - Skymind社がサポート(Softbankと共同) - これからPepperに入るかも - 当然だがKotlinで問題なく使える - 公式サンプルコードにも.ktファイルを目撃
deeplearning4jのモデルZOO - 有名なモデルを提供 - VGG16もある - 学習済みモデルがDL可 - 最初の実行時にモデルを裏でDL -
~490MB
ここでKotlinの一つのアピールポイント - outputはINDArray型である - deeplearning4j所属ライブラリの行列フォーマット - 扱いにくい(数学視点重視) - 答えは一行の行列で表す -
Kotlinの拡張関数でList<Double>に置き換える - Kotlinの便利機能は直感的に使える - sort, map, ...
犬猫NNの実装 - 公式サンプルコードを自分のニーズに合わせて、モデルを作成 - VGG16ラベル+答えで学習させる - 学習済みモデルを保存(Serialize) - 答えは下記のように定義 -
猫の場合:100%猫、0%犬 - 犬の場合:0%猫、100%犬 https://github.com/lukasjapan catsvsdogsgame
犬猫判断の実装 - 保存モデルをDeserialize - VGG16モデルで得たラベルを入力 - 犬猫それぞれの自信度出力
デモ(というかゲーム!) - TwitterAPIで #m3kt #catsdogs ハッシュタグを監視 - ツイートのプロフィール写真で犬猫判断を行う - 結果はAPIで呟く
@cvguy84 - おまけでVGG16モデルの判断も教える - 「自信度」が高くなるプロフィール写真が勝つ ヒント:どうしても勝ちたい場合は、プロフィール写真を犬または猫に変える https://github.com/lukasjapan catsvsdogsgame
最後に - http://www.fast.aiのディープラーニングコース - 機械学習世界で有名な「Jeremy Howard」が無料提供 - Youtube動画 - プログラマー向け
- 数学的なことももちろん教えている - Python/Keras/... - 今日の内容はLesson 1+2
#m3kt #catsdogs ぜひ呟いてみてね! https://github.com/lukasjapan catsvsdogsgame