Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Food Image Object Detection and Classification
Search
Leszek Rybicki
February 16, 2017
Research
2
15k
Food Image Object Detection and Classification
Part 1: Detection
Leszek Rybicki
February 16, 2017
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
120
How to Patch Image Classifiers
lunardog
0
2.1k
Towards Realistic Predictors - EN
lunardog
0
1.9k
Towards Realistic Predictors
lunardog
1
2.2k
Deep Learning Hot Dog Detector
lunardog
0
260
Finding beans in burgers: paper reading notes
lunardog
0
1.5k
Kelner: Serve Your Models
lunardog
0
110
Image Analysis at Cookpad
lunardog
1
1.7k
Kelner: serve your models
lunardog
1
370
Other Decks in Research
See All in Research
自然由来エネルギーの揺らぎによるワークロード移動を想定した超個体データセンターシステムの検討進捗状況
kikuzo
0
130
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
11
3.7k
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
140
Introduction of NII S. Koyama's Lab (AY2025)
skoyamalab
0
460
Collaborative Development of Foundation Models at Japanese Academia
odashi
2
550
Self-supervised audiovisual representation learning for remote sensing data
satai
3
190
EarthMarker: A Visual Prompting Multimodal Large Language Model for Remote Sensing
satai
3
260
クラウドのテレメトリーシステム研究動向2025年
yuukit
3
930
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
170
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1k
近似動的計画入門
mickey_kubo
4
900
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
490
Featured
See All Featured
Statistics for Hackers
jakevdp
799
220k
The World Runs on Bad Software
bkeepers
PRO
68
11k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Thoughts on Productivity
jonyablonski
69
4.7k
For a Future-Friendly Web
brad_frost
178
9.8k
Rails Girls Zürich Keynote
gr2m
94
13k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.3k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
The Invisible Side of Design
smashingmag
299
50k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
How to Think Like a Performance Engineer
csswizardry
24
1.6k
Six Lessons from altMBA
skipperchong
28
3.8k
Transcript
Food Image Object Detection and Classification Challenges and Solutions
Part 1: Detection
自己紹介 • リビツキ レシェック • ポーランド出身 • 2016~ クックパッド • github:
lunardog
Warning! This presentation contains images that may cause severe drooling
and stomach grumbling. @cookpad
History 歴史
ImageNet KWWSLPDJHQHWRUJ
ImageNet Large Scale Visual Recognition Competition KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
ILSVRC 2010 task Classification )RUHDFKLPDJHDOJRULWKPV ZLOOSURGXFHDOLVWRIDWPRVW REMHFWFDWHJRULHVLQWKH GHVFHQGLQJRUGHURI FRQILGHQFH KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
ILSVRC 2011 tasks 1. Classification 2. *Classification with localization *tester
task
KWWSFVQVWDQIRUGHGXV\OODEXVKWPO Classification + Localization
ILSVRC 2012 tasks 1. Classification 2. Classification with localization 3.
Fine-grained classification
Fine-grained classification KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
AlexNet ,PDJHQHWFODVVLILFDWLRQZLWKGHHSFRQYROXWLRQDOQHXUDOQHWZRUNV $.UL]KHYVN\,6XWVNHYHU*(+LQWRQ$GYDQFHVLQQHXUDOLQIRUPDWLRQ SURFHVVLQJV\VWHPV
ILSVRC 2013 tasks 1. Detection 2. Classification 3. Classification with
localization
ILSVRC 2014 tasks 1. Detection 2. Classification 3. Classification with
localization
Object Detection KWWSFVQVWDQIRUGHGXV\OODEXVKWPO
Deep Learning KWWSVGHYEORJVQYLGLDFRP
ILSVRC 2015 tasks 1. Object detection 2. Object localization 3.
*Object detection from video 4. *Scene classification
ILSVRC 2016 tasks 1. Object localization 2. Object detection 3.
Object detection from video 4. Scene classification 5. Scene parsing
Cookpad 2016
画像データセット 1997年~ レシピ数:国内約260万 + 国外 + つくれぽ + 手順写真 17言語、60カ国
※数字は2017年02月時点のものです
画像解析の研究関心 • これは料理ですか? • どの料理ですか? • 料理はどこですか? • 。。。 Part
2
Where is the food? 料理はどこですか?
ゴール )LQGIRRGLQWKHLPDJHGUDZ DERXQGLQJER[DURXQGWKH IRRGLWHPLQFOXGLQJWKH GLVKLIYLVLEOH
,IWKHUHDUHPXOWLSOHLWHPV GUDZDERXQGLQJER[ DURXQGHDFKRQH ゴール
ground truth bounding box > 0.9 We count it as
a positive detection if Intersection over Union ratio is greater than 0.9. ƴ
QXPEHURIWUXHSRVLWLYHV QXPEHURIJURXQGWUXWKER[HV ƴ ƴ ƴ QXPEHURIWUXHSRVLWLYHV QXPEHURIJHQHUDWHGER[HV 再現率 (precision) (recall)
ƴ ƴ
Methods
1. Build a classifier 2. Pick Regions of Interest 3.
Run classifier on each region 4. Remove duplicate detections IDEA
Fast, Faster R-CNN 5LFKIHDWXUHKLHUDUFKLHVIRUDFFXUDWHREMHFWGHWHFWLRQDQGVHPDQWLFVHJPHQWDWLRQ 5RVV*LUVKLFN-HII'RQDKXH7UHYRU'DUUHOO-LWHQGUD0DOLN )DVWHU5&117RZDUGV5HDO7LPH2EMHFW'HWHFWLRQZLWK5HJLRQ3URSRVDO1HWZRUNV 6KDRTLQJ5HQ.DLPLQJ+H5RVV*LUVKLFN-LDQ6XQ
)DVW5&11 5RVV*LUVKLFN
問題 1. Computational cost 2. Context is important 3. ...but
context can be confusing. KDQG IRRG JUDVV IRRG KWWSSL[DED\FRP
Single Shot Detector 66'6LQJOH6KRW0XOWL%R['HWHFWRU :HL/LX'UDJRPLU$QJXHORY'XPLWUX(UKDQ&KULVWLDQ6]HJHG\ 6FRWW5HHG&KHQJ<DQJ)X$OH[DQGHU&%HUJ
Either The Least Or Most Employable Person Ever 7KH+XIILQJWRQ3RVW JLWKXEFRPSMUHGGLH
SMUHGGLHFRPGDUNQHW ZZZNDJJOHFRPSMUHGGLH Joseph Redmon
You Only Look Once <RX2QO\/RRN2QFH8QLILHG 5HDO7LPH2EMHFW'HWHFWLRQ -RVHSK5HGPRQ6DQWRVK'LYYDOD5RVV *LUVKLFN$OL)DUKDGL 'HF
<2/2%HWWHU)DVWHU 6WURQJHU -RVHSK5HGPRQ$OL)DUKDGL
<RX2QO\/RRN2QFH8QLILHG5HDO7LPH2EMHFW'HWHFWLRQ -RVHSK5HGPRQ6DQWRVK'LYYDOD5RVV*LUVKLFN$OL)DUKDGL YOLO in Context
None