Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Food Image Object Detection and Classification
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Leszek Rybicki
February 16, 2017
Research
2
15k
Food Image Object Detection and Classification
Part 1: Detection
Leszek Rybicki
February 16, 2017
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
150
How to Patch Image Classifiers
lunardog
0
2.5k
Towards Realistic Predictors - EN
lunardog
0
2.4k
Towards Realistic Predictors
lunardog
1
2.3k
Deep Learning Hot Dog Detector
lunardog
0
290
Finding beans in burgers: paper reading notes
lunardog
0
1.8k
Kelner: Serve Your Models
lunardog
0
130
Image Analysis at Cookpad
lunardog
1
1.8k
Kelner: serve your models
lunardog
1
400
Other Decks in Research
See All in Research
音声感情認識技術の進展と展望
nagase
0
470
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
500
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
170
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
500
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
290
R&Dチームを起ち上げる
shibuiwilliam
1
160
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
140
OWASP KansaiDAY 2025.09_文系OSINTハンズオン
owaspkansai
0
110
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Done Done
chrislema
186
16k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
78
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
200
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
Six Lessons from altMBA
skipperchong
29
4.2k
Fireside Chat
paigeccino
41
3.8k
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Transcript
Food Image Object Detection and Classification Challenges and Solutions
Part 1: Detection
自己紹介 • リビツキ レシェック • ポーランド出身 • 2016~ クックパッド • github:
lunardog
Warning! This presentation contains images that may cause severe drooling
and stomach grumbling. @cookpad
History 歴史
ImageNet KWWSLPDJHQHWRUJ
ImageNet Large Scale Visual Recognition Competition KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
ILSVRC 2010 task Classification )RUHDFKLPDJHDOJRULWKPV ZLOOSURGXFHDOLVWRIDWPRVW REMHFWFDWHJRULHVLQWKH GHVFHQGLQJRUGHURI FRQILGHQFH KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
ILSVRC 2011 tasks 1. Classification 2. *Classification with localization *tester
task
KWWSFVQVWDQIRUGHGXV\OODEXVKWPO Classification + Localization
ILSVRC 2012 tasks 1. Classification 2. Classification with localization 3.
Fine-grained classification
Fine-grained classification KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
AlexNet ,PDJHQHWFODVVLILFDWLRQZLWKGHHSFRQYROXWLRQDOQHXUDOQHWZRUNV $.UL]KHYVN\,6XWVNHYHU*(+LQWRQ$GYDQFHVLQQHXUDOLQIRUPDWLRQ SURFHVVLQJV\VWHPV
ILSVRC 2013 tasks 1. Detection 2. Classification 3. Classification with
localization
ILSVRC 2014 tasks 1. Detection 2. Classification 3. Classification with
localization
Object Detection KWWSFVQVWDQIRUGHGXV\OODEXVKWPO
Deep Learning KWWSVGHYEORJVQYLGLDFRP
ILSVRC 2015 tasks 1. Object detection 2. Object localization 3.
*Object detection from video 4. *Scene classification
ILSVRC 2016 tasks 1. Object localization 2. Object detection 3.
Object detection from video 4. Scene classification 5. Scene parsing
Cookpad 2016
画像データセット 1997年~ レシピ数:国内約260万 + 国外 + つくれぽ + 手順写真 17言語、60カ国
※数字は2017年02月時点のものです
画像解析の研究関心 • これは料理ですか? • どの料理ですか? • 料理はどこですか? • 。。。 Part
2
Where is the food? 料理はどこですか?
ゴール )LQGIRRGLQWKHLPDJHGUDZ DERXQGLQJER[DURXQGWKH IRRGLWHPLQFOXGLQJWKH GLVKLIYLVLEOH
,IWKHUHDUHPXOWLSOHLWHPV GUDZDERXQGLQJER[ DURXQGHDFKRQH ゴール
ground truth bounding box > 0.9 We count it as
a positive detection if Intersection over Union ratio is greater than 0.9. ƴ
QXPEHURIWUXHSRVLWLYHV QXPEHURIJURXQGWUXWKER[HV ƴ ƴ ƴ QXPEHURIWUXHSRVLWLYHV QXPEHURIJHQHUDWHGER[HV 再現率 (precision) (recall)
ƴ ƴ
Methods
1. Build a classifier 2. Pick Regions of Interest 3.
Run classifier on each region 4. Remove duplicate detections IDEA
Fast, Faster R-CNN 5LFKIHDWXUHKLHUDUFKLHVIRUDFFXUDWHREMHFWGHWHFWLRQDQGVHPDQWLFVHJPHQWDWLRQ 5RVV*LUVKLFN-HII'RQDKXH7UHYRU'DUUHOO-LWHQGUD0DOLN )DVWHU5&117RZDUGV5HDO7LPH2EMHFW'HWHFWLRQZLWK5HJLRQ3URSRVDO1HWZRUNV 6KDRTLQJ5HQ.DLPLQJ+H5RVV*LUVKLFN-LDQ6XQ
)DVW5&11 5RVV*LUVKLFN
問題 1. Computational cost 2. Context is important 3. ...but
context can be confusing. KDQG IRRG JUDVV IRRG KWWSSL[DED\FRP
Single Shot Detector 66'6LQJOH6KRW0XOWL%R['HWHFWRU :HL/LX'UDJRPLU$QJXHORY'XPLWUX(UKDQ&KULVWLDQ6]HJHG\ 6FRWW5HHG&KHQJ<DQJ)X$OH[DQGHU&%HUJ
Either The Least Or Most Employable Person Ever 7KH+XIILQJWRQ3RVW JLWKXEFRPSMUHGGLH
SMUHGGLHFRPGDUNQHW ZZZNDJJOHFRPSMUHGGLH Joseph Redmon
You Only Look Once <RX2QO\/RRN2QFH8QLILHG 5HDO7LPH2EMHFW'HWHFWLRQ -RVHSK5HGPRQ6DQWRVK'LYYDOD5RVV *LUVKLFN$OL)DUKDGL 'HF
<2/2%HWWHU)DVWHU 6WURQJHU -RVHSK5HGPRQ$OL)DUKDGL
<RX2QO\/RRN2QFH8QLILHG5HDO7LPH2EMHFW'HWHFWLRQ -RVHSK5HGPRQ6DQWRVK'LYYDOD5RVV*LUVKLFN$OL)DUKDGL YOLO in Context
None