Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Food Image Object Detection and Classification
Search
Leszek Rybicki
February 16, 2017
Research
2
15k
Food Image Object Detection and Classification
Part 1: Detection
Leszek Rybicki
February 16, 2017
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
150
How to Patch Image Classifiers
lunardog
0
2.4k
Towards Realistic Predictors - EN
lunardog
0
2.3k
Towards Realistic Predictors
lunardog
1
2.3k
Deep Learning Hot Dog Detector
lunardog
0
280
Finding beans in burgers: paper reading notes
lunardog
0
1.7k
Kelner: Serve Your Models
lunardog
0
130
Image Analysis at Cookpad
lunardog
1
1.8k
Kelner: serve your models
lunardog
1
400
Other Decks in Research
See All in Research
湯村研究室の紹介2025 / yumulab2025
yumulab
0
280
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
310
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.7k
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.2k
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
340
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
410
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
110
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
390
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
110
Akamaiのキャッシュ効率を支えるAdaptSizeについての論文を読んでみた
bootjp
1
380
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
110
Featured
See All Featured
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.3k
Accessibility Awareness
sabderemane
0
31
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
The browser strikes back
jonoalderson
0
290
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Fireside Chat
paigeccino
41
3.8k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
48k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
530
The Language of Interfaces
destraynor
162
26k
Amusing Abliteration
ianozsvald
0
83
Deep Space Network (abreviated)
tonyrice
0
33
Transcript
Food Image Object Detection and Classification Challenges and Solutions
Part 1: Detection
自己紹介 • リビツキ レシェック • ポーランド出身 • 2016~ クックパッド • github:
lunardog
Warning! This presentation contains images that may cause severe drooling
and stomach grumbling. @cookpad
History 歴史
ImageNet KWWSLPDJHQHWRUJ
ImageNet Large Scale Visual Recognition Competition KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
ILSVRC 2010 task Classification )RUHDFKLPDJHDOJRULWKPV ZLOOSURGXFHDOLVWRIDWPRVW REMHFWFDWHJRULHVLQWKH GHVFHQGLQJRUGHURI FRQILGHQFH KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
ILSVRC 2011 tasks 1. Classification 2. *Classification with localization *tester
task
KWWSFVQVWDQIRUGHGXV\OODEXVKWPO Classification + Localization
ILSVRC 2012 tasks 1. Classification 2. Classification with localization 3.
Fine-grained classification
Fine-grained classification KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
AlexNet ,PDJHQHWFODVVLILFDWLRQZLWKGHHSFRQYROXWLRQDOQHXUDOQHWZRUNV $.UL]KHYVN\,6XWVNHYHU*(+LQWRQ$GYDQFHVLQQHXUDOLQIRUPDWLRQ SURFHVVLQJV\VWHPV
ILSVRC 2013 tasks 1. Detection 2. Classification 3. Classification with
localization
ILSVRC 2014 tasks 1. Detection 2. Classification 3. Classification with
localization
Object Detection KWWSFVQVWDQIRUGHGXV\OODEXVKWPO
Deep Learning KWWSVGHYEORJVQYLGLDFRP
ILSVRC 2015 tasks 1. Object detection 2. Object localization 3.
*Object detection from video 4. *Scene classification
ILSVRC 2016 tasks 1. Object localization 2. Object detection 3.
Object detection from video 4. Scene classification 5. Scene parsing
Cookpad 2016
画像データセット 1997年~ レシピ数:国内約260万 + 国外 + つくれぽ + 手順写真 17言語、60カ国
※数字は2017年02月時点のものです
画像解析の研究関心 • これは料理ですか? • どの料理ですか? • 料理はどこですか? • 。。。 Part
2
Where is the food? 料理はどこですか?
ゴール )LQGIRRGLQWKHLPDJHGUDZ DERXQGLQJER[DURXQGWKH IRRGLWHPLQFOXGLQJWKH GLVKLIYLVLEOH
,IWKHUHDUHPXOWLSOHLWHPV GUDZDERXQGLQJER[ DURXQGHDFKRQH ゴール
ground truth bounding box > 0.9 We count it as
a positive detection if Intersection over Union ratio is greater than 0.9. ƴ
QXPEHURIWUXHSRVLWLYHV QXPEHURIJURXQGWUXWKER[HV ƴ ƴ ƴ QXPEHURIWUXHSRVLWLYHV QXPEHURIJHQHUDWHGER[HV 再現率 (precision) (recall)
ƴ ƴ
Methods
1. Build a classifier 2. Pick Regions of Interest 3.
Run classifier on each region 4. Remove duplicate detections IDEA
Fast, Faster R-CNN 5LFKIHDWXUHKLHUDUFKLHVIRUDFFXUDWHREMHFWGHWHFWLRQDQGVHPDQWLFVHJPHQWDWLRQ 5RVV*LUVKLFN-HII'RQDKXH7UHYRU'DUUHOO-LWHQGUD0DOLN )DVWHU5&117RZDUGV5HDO7LPH2EMHFW'HWHFWLRQZLWK5HJLRQ3URSRVDO1HWZRUNV 6KDRTLQJ5HQ.DLPLQJ+H5RVV*LUVKLFN-LDQ6XQ
)DVW5&11 5RVV*LUVKLFN
問題 1. Computational cost 2. Context is important 3. ...but
context can be confusing. KDQG IRRG JUDVV IRRG KWWSSL[DED\FRP
Single Shot Detector 66'6LQJOH6KRW0XOWL%R['HWHFWRU :HL/LX'UDJRPLU$QJXHORY'XPLWUX(UKDQ&KULVWLDQ6]HJHG\ 6FRWW5HHG&KHQJ<DQJ)X$OH[DQGHU&%HUJ
Either The Least Or Most Employable Person Ever 7KH+XIILQJWRQ3RVW JLWKXEFRPSMUHGGLH
SMUHGGLHFRPGDUNQHW ZZZNDJJOHFRPSMUHGGLH Joseph Redmon
You Only Look Once <RX2QO\/RRN2QFH8QLILHG 5HDO7LPH2EMHFW'HWHFWLRQ -RVHSK5HGPRQ6DQWRVK'LYYDOD5RVV *LUVKLFN$OL)DUKDGL 'HF
<2/2%HWWHU)DVWHU 6WURQJHU -RVHSK5HGPRQ$OL)DUKDGL
<RX2QO\/RRN2QFH8QLILHG5HDO7LPH2EMHFW'HWHFWLRQ -RVHSK5HGPRQ6DQWRVK'LYYDOD5RVV*LUVKLFN$OL)DUKDGL YOLO in Context
None