Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Food Image Object Detection and Classification
Search
Leszek Rybicki
February 16, 2017
Research
2
15k
Food Image Object Detection and Classification
Part 1: Detection
Leszek Rybicki
February 16, 2017
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
140
How to Patch Image Classifiers
lunardog
0
2.4k
Towards Realistic Predictors - EN
lunardog
0
2.3k
Towards Realistic Predictors
lunardog
1
2.3k
Deep Learning Hot Dog Detector
lunardog
0
280
Finding beans in burgers: paper reading notes
lunardog
0
1.7k
Kelner: Serve Your Models
lunardog
0
120
Image Analysis at Cookpad
lunardog
1
1.8k
Kelner: serve your models
lunardog
1
390
Other Decks in Research
See All in Research
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
140
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
10k
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
130
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
13
7.1k
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
210
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
220
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
180
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
1k
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
710
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
370
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
360
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
260
Featured
See All Featured
Facilitating Awesome Meetings
lara
57
6.6k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
It's Worth the Effort
3n
187
29k
A Tale of Four Properties
chriscoyier
162
23k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
Unsuck your backbone
ammeep
671
58k
Scaling GitHub
holman
464
140k
Transcript
Food Image Object Detection and Classification Challenges and Solutions
Part 1: Detection
自己紹介 • リビツキ レシェック • ポーランド出身 • 2016~ クックパッド • github:
lunardog
Warning! This presentation contains images that may cause severe drooling
and stomach grumbling. @cookpad
History 歴史
ImageNet KWWSLPDJHQHWRUJ
ImageNet Large Scale Visual Recognition Competition KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
ILSVRC 2010 task Classification )RUHDFKLPDJHDOJRULWKPV ZLOOSURGXFHDOLVWRIDWPRVW REMHFWFDWHJRULHVLQWKH GHVFHQGLQJRUGHURI FRQILGHQFH KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
ILSVRC 2011 tasks 1. Classification 2. *Classification with localization *tester
task
KWWSFVQVWDQIRUGHGXV\OODEXVKWPO Classification + Localization
ILSVRC 2012 tasks 1. Classification 2. Classification with localization 3.
Fine-grained classification
Fine-grained classification KWWSZZZLPDJHQHWRUJFKDOOHQJHV/695&
AlexNet ,PDJHQHWFODVVLILFDWLRQZLWKGHHSFRQYROXWLRQDOQHXUDOQHWZRUNV $.UL]KHYVN\,6XWVNHYHU*(+LQWRQ$GYDQFHVLQQHXUDOLQIRUPDWLRQ SURFHVVLQJV\VWHPV
ILSVRC 2013 tasks 1. Detection 2. Classification 3. Classification with
localization
ILSVRC 2014 tasks 1. Detection 2. Classification 3. Classification with
localization
Object Detection KWWSFVQVWDQIRUGHGXV\OODEXVKWPO
Deep Learning KWWSVGHYEORJVQYLGLDFRP
ILSVRC 2015 tasks 1. Object detection 2. Object localization 3.
*Object detection from video 4. *Scene classification
ILSVRC 2016 tasks 1. Object localization 2. Object detection 3.
Object detection from video 4. Scene classification 5. Scene parsing
Cookpad 2016
画像データセット 1997年~ レシピ数:国内約260万 + 国外 + つくれぽ + 手順写真 17言語、60カ国
※数字は2017年02月時点のものです
画像解析の研究関心 • これは料理ですか? • どの料理ですか? • 料理はどこですか? • 。。。 Part
2
Where is the food? 料理はどこですか?
ゴール )LQGIRRGLQWKHLPDJHGUDZ DERXQGLQJER[DURXQGWKH IRRGLWHPLQFOXGLQJWKH GLVKLIYLVLEOH
,IWKHUHDUHPXOWLSOHLWHPV GUDZDERXQGLQJER[ DURXQGHDFKRQH ゴール
ground truth bounding box > 0.9 We count it as
a positive detection if Intersection over Union ratio is greater than 0.9. ƴ
QXPEHURIWUXHSRVLWLYHV QXPEHURIJURXQGWUXWKER[HV ƴ ƴ ƴ QXPEHURIWUXHSRVLWLYHV QXPEHURIJHQHUDWHGER[HV 再現率 (precision) (recall)
ƴ ƴ
Methods
1. Build a classifier 2. Pick Regions of Interest 3.
Run classifier on each region 4. Remove duplicate detections IDEA
Fast, Faster R-CNN 5LFKIHDWXUHKLHUDUFKLHVIRUDFFXUDWHREMHFWGHWHFWLRQDQGVHPDQWLFVHJPHQWDWLRQ 5RVV*LUVKLFN-HII'RQDKXH7UHYRU'DUUHOO-LWHQGUD0DOLN )DVWHU5&117RZDUGV5HDO7LPH2EMHFW'HWHFWLRQZLWK5HJLRQ3URSRVDO1HWZRUNV 6KDRTLQJ5HQ.DLPLQJ+H5RVV*LUVKLFN-LDQ6XQ
)DVW5&11 5RVV*LUVKLFN
問題 1. Computational cost 2. Context is important 3. ...but
context can be confusing. KDQG IRRG JUDVV IRRG KWWSSL[DED\FRP
Single Shot Detector 66'6LQJOH6KRW0XOWL%R['HWHFWRU :HL/LX'UDJRPLU$QJXHORY'XPLWUX(UKDQ&KULVWLDQ6]HJHG\ 6FRWW5HHG&KHQJ<DQJ)X$OH[DQGHU&%HUJ
Either The Least Or Most Employable Person Ever 7KH+XIILQJWRQ3RVW JLWKXEFRPSMUHGGLH
SMUHGGLHFRPGDUNQHW ZZZNDJJOHFRPSMUHGGLH Joseph Redmon
You Only Look Once <RX2QO\/RRN2QFH8QLILHG 5HDO7LPH2EMHFW'HWHFWLRQ -RVHSK5HGPRQ6DQWRVK'LYYDOD5RVV *LUVKLFN$OL)DUKDGL 'HF
<2/2%HWWHU)DVWHU 6WURQJHU -RVHSK5HGPRQ$OL)DUKDGL
<RX2QO\/RRN2QFH8QLILHG5HDO7LPH2EMHFW'HWHFWLRQ -RVHSK5HGPRQ6DQWRVK'LYYDOD5RVV*LUVKLFN$OL)DUKDGL YOLO in Context
None