a Service • Collaborate with Claude on Projects • Announcing LangGraph v0.1 & LangGraph Cloud: Running agents at scale, reliably ブログ • Enhancing Code Reviews with AI PR Agent • Literature Review on Task Planning with LLM Agents • How to build AI agents to automate web browsing with human level reasoning? Part 2: Using Large Context Window • Architecting + testing reliable agents • Gemini API の Function Calling 機能で LLM Agent を実装する ベンチャー企業 • MyLens AI turns any input into an easy-to-understand visual. • Relay.app • AI-FLOW
need • Exploring AI Automation: Agentic Workflows with LangGraph and Tavily • Automating Complex Business Workflows with Cohere: Multi-Step Tool Use in Action • Building Advanced RAG Over Complex Documents • Evaluating Specific LLM Applications: Agents ニュース • Introducing AutoGen Studio: A low-code interface for building multi-agent workflows • 国産LLM初、AIエージェントとして使える「KARAKURI LM 8x7B Instruct v0.1」を⼀般公開
Powered by crewAI • Morphが取り組む、データ処理特化のAIエージェントの開発: 開発チームからの⼿紙 ブログ • AIエージェントのみでBPO 企業を作り上げる⽅法:Dify+Ollama+Llama3+Groqで顧客サポート窓⼝業務を完 全⾃動化 • Language Agent Tree Search ̶ LATS • Building AI Agents: Lessons Learned over the past Year • Building an Agent for Data Visualization (Plotly) リリース • AIキャラクターによるライブ配信の新時代!『キャラクターストリーマー』サービス開始 • Intro to Generative UI with LangChain • Qwen-Agent: Generalizing from 8k to 1 Million Contexts
momentʼ as investors look for whatʼs next after chatbots • From gen AI 1.5 to 2.0: Moving from RAG to agent systems • The Rise of AI Agent Infrastructure • Betaworks bets on AI agents in latest ʻCampʼ cohort • New AI agent for venture capital: 100x cheaper, 5x faster and on-par quality with humans • Financial Services Will Embrace Generative AI Faster Than You Think • Hi, AI: Our Thesis on AI Voice Agents 開発 • LlamaIndex Agent Resources
to Agent Engineering • AI Agentic Design Patterns with AutoGen • AIエージェントが⼈間のバディーに--アクセンチュア、2024年の技術トレンドを解説 • AI Agents Are Going To Automate The Following Tasks First • Introducing Perplexity Pages • 少数ショットのツールの使⽤は実際にはまだ機能しない • Building an AI Agent With Memory Using MongoDB, Fireworks AI, and LangChain
ReAct: Synergizing Reasoning and Acting in Language Models • ⾔語モデルにタスクとツールを与え、反復的に「思考」「⾏動」「観察」を⾏うフレームワーク。self-consistencyとCoTを組み合わせることで、結果の精度が向上 2. Reflexion: Language Agents with Verbal Reinforcement Learning • ReActに評価と内省のステップを追加し、出⼒や現在の軌跡が正しいかを判断。 外部の信号がある場合に効果的である 3. LLM+P: Empowering Large Language Models with Optimal Planning Proficiency • タスクをPDDL(Planning Domain Definition Language)に変換し、ソルバー/プランナーで解決。PDDLの制限として、アクション空間が⼤きい場合には適⽤が難しい。 6. Language Agent Tree Search (LATS) • モンテカルロ⽊探索をLLMに統合し、⾏動、観察、計画を⾏う。 self-consistency と評価スコアを組み合わせ、反射ステップで失敗の原因を分析。 7. ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models • 計画と実⾏者を分離し、計画と実⾏結果から回答を⽣成。ReActを上回る性能を発揮 8. Plan, Eliminate, and Track ̶ Language Models are Good Teachers for Embodied Agents • ⾼レベルのタスクをサブタスクに分解し、不要なタスクを排除、タスク完了を追跡。タスクの依存関係を前提としない独⽴した⽅法 9. LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models • ⾼レベルのプランは低レベルのプランナーが知り得た環境情報に基づいて計画更新。フィードバックが重要で、失敗時に新たなプランを⽣成 10. Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents • 実⾏可能な計画が複数存在することが多い。複雑な環境での効率的なプラン選択するモデルを提案 https://isamu-website.medium.com/literature-review-on-task-planning-with-llm-agents-a5c60ce4f6de
Google Cloud の Gemini API の Function Calling 機能を使ってLLM Agent の実装例を紹介 • Function Calling は、「どの API を使⽤すれば回答に必要な情報が得られるか?」を Gemini ⾃⾝に考えさせる • ToolsにはBigQueryのAPIを⽤意し、関数の引数でSQLクエリを⽣成させる • Geminiが関数とそのSQLクエリを⽣成したらその値をもとにAPIを実⾏する https://zenn.dev/google_cloud_jp/articles/3fa4da1eb63948 ツールの定義 Function Calling を使⽤した Agent の動作
agent systems • Gen AI 1.0: プロンプトエンジニアリング、Few Shot Learning • Gen AI 1.5: 検索拡張⽣成、埋め込みモデル、ベクトルデータベース • Gen AI 2.0: エージェントシステム • 複数の⽣成AIの機能を創造的に連携させること • Gen AI 2.0の最初のステップは⼀連のアクションを⼿動で開発すること • BrainBox.ai ARIAはビル管理AIシステムで、故障した機器の写真を理解し、ナレッジベースから関連するコンテキストを 検索し、IoTデータフィードから関連情報をAPIで取得し、最終的に対処⽅法を提案する • しかし、このシステムの制限は、問題を解決するロジックを開発チームがハードコーディングするか、1-2ステップの深 さにとどまる点 • Gen AI 2.0では、問題を解決するロジックを推論するエージェントシステムになる。問題をステップに分解し、ツールの 集合から選択して各ステップを実⾏する。データ収集、推論、アクション実⾏の各コンポーネントを分離することで、柔 軟なソリューションを実現する。 https://venturebeat.com/ai/from-gen-ai-1-5-to-2-0-moving-from-rag-to-agent-systems/ https://brainboxai.com/en/articles/introducing-aria-revolutionizing-building-management-with-ai
Tree-based なLanguage Agent Tree Searchが気になる RAG in 2024: Advancing to Agents https://llamaindex.notion.site/LlamaIndex-Agent-Resources-cb8585332fdb42e98b30a091412322bb
以下ではAIエージェントは既に⼈間より性能が良いとされている • customer support and call routing(顧客サポートと通話ルーティング ) • doc generation in the legal profession(法律専⾨家によるドキュメント⽣成) • data analyst / report generator(データアナリスト/レポート作成) • IT support desk and ticket triage( IT サポートデスクとチケットトリアージ ) • test script generator(テストコード⽣成 ) • junior financial analyst(ジュニア⾦融アナリスト) • contract creation and analysis (契約の作成と分析) https://x.com/bindureddy/status/1796013640555827680