Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
インフラの企業研究の価値とこれから
Search
MATSUMOTO Ryosuke
PRO
November 25, 2020
Research
7
19k
インフラの企業研究の価値とこれから
インターネット基盤技術の研究と企業における未来を見据えた研究組織設計と実践
2020/11/15
さくらインターネット株式会社
さくらインターネット研究所
上級研究員 松本 亮介
MATSUMOTO Ryosuke
PRO
November 25, 2020
Tweet
Share
More Decks by MATSUMOTO Ryosuke
See All by MATSUMOTO Ryosuke
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
4.9k
エンジニアのキャリアパスはどう描く? まつもとりーさんと考える後悔しないキャリア選択
matsumoto_r
PRO
10
2k
まつもとりーのこれまでとCOGNANOのこれから
matsumoto_r
PRO
0
280
2022年の研究所の評価制度振り返りと今後
matsumoto_r
PRO
0
690
VUCAワールドから紐解く組織や評価制度の変遷と再設計
matsumoto_r
PRO
9
26k
コンテナの研究開発から学ぶLinuxの要素技術
matsumoto_r
PRO
2
1.5k
開発者体験をさらに向上させる 事業と研究との連携
matsumoto_r
PRO
2
2.2k
企業研究の価値と事業との連携
matsumoto_r
PRO
0
1.3k
誇りを持って研究していくために
matsumoto_r
PRO
1
1.5k
Other Decks in Research
See All in Research
SpectralMamba: Efficient Mamba for Hyperspectral Image Classification
satai
2
150
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
540
ドローンやICTを活用した持続可能なまちづくりに関する研究
nro2daisuke
0
130
[輪講] Transformer Layers as Painters
nk35jk
4
650
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
1k
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
500
o1 pro mode の調査レポート
smorce
0
110
Satellite Sunroof: High-res Digital Surface Models and Roof Segmentation for Global Solar Mapping
satai
2
130
大規模言語モデルを用いたニュースデータのセンチメント判定モデルの開発および実体経済センチメントインデックスの構成
nomamist
0
110
Composed image retrieval for remote sensing
satai
2
240
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
390
第79回 産総研人工知能セミナー 発表資料
agiats
3
200
Featured
See All Featured
Music & Morning Musume
bryan
46
6.3k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
Bootstrapping a Software Product
garrettdimon
PRO
306
110k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
For a Future-Friendly Web
brad_frost
176
9.5k
It's Worth the Effort
3n
184
28k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
How to train your dragon (web standard)
notwaldorf
91
5.8k
Embracing the Ebb and Flow
colly
84
4.6k
Speed Design
sergeychernyshev
27
790
Transcript
͘͞ΒΠϯλʔωοτגࣜձࣾ (C) Copyright 1996-2020 SAKURA Internet Inc ͘͞ΒΠϯλʔωοτݚڀॴ ΠϯϑϥͷاۀݚڀͷՁͱ͜Ε͔Β 2020/11/25
্ڃݚڀһ দຊ ྄հ Πϯλʔωοτج൫ٕज़ͷݚڀͱاۀʹ͓͚ΔະདྷΛݟਾ͑ͨݚڀ৫ઃܭͱ࣮ફ
1. ͡Ίʹ 2. ΠϯϑϥͷاۀݚڀͷՁ 3. Πϯϑϥͷاۀݚڀͷ͜Ε͔Β 4. ·ͱΊ 2 ࣍
1. ͡Ίʹ
4 ɾ͘͞ΒΠϯλʔωοτݚڀॴ ্ڃݚڀһ ɾϖύϘݚڀॴ ٬һݚڀһ ݚڀސ ɾגࣜձࣾGrooves Forkewll ٕज़ސ ɾגࣜձࣾωοτϑΥϨετ
ٕज़ސ ɾใॲཧֶձ ITRC ֤छҕһ / IEEE ACM USENIX ֤छձһ ɾژେֶത࢜ʢใֶʣ দຊ྄հ / ·ͭͱΓʔ / @matsumotory
• InfraStudyͷΠϯϑϥٕज़ͷจ຺ʹ͓͚Δݚڀ։ൃͱʁ • ݚڀ։ൃͷҙٛߩݙͱʁ • ͳͥاۀͰݚڀॴΛ࣋ͬͯݚڀ͍ͯ͠Δͷ͔ʁ • ͜Ε͔Βݚڀ։ൃͲ͏ͳ͍͔ͬͯ͘ʁ ͘͞ΒΠϯλʔωοτͰશͯͰ͖͍ͯΔͱ͍͏Ͱͳ͘ɼ͜Ε͔ΒऔΓΜ Ͱ͍͖͍ͨ༰Ͱ͋Γ·͢ɽ
5 اۀʹ͓͚Δݚڀͱͳʹ͔
2. ΠϯϑϥͷاۀݚڀͷՁ
1. اۀͷݚڀऀͱ 2. ݚڀऀͷߩݙͱ 7 ΠϯϑϥͷاۀݚڀͷՁ
اۀͷݚڀऀͱ
• اۀͰςΫϊϩδʔΛ৽͘͠ੜΈग़͠ɼӥஐͱͯ͠ӬଓԽͯ͠վળΛ܁Γฦ͢ • ৽͠͞ΛΔͨΊʹաڈɾݱࡏͷؔ࿈ٕज़ɾاۀͷ՝Λௐࠪͯ͠ཧ • ઌͷٕज़τϨϯυΛݟਾ͑ͨݚڀͷௐࠪɾ৽ٕज़ఏҊͱͦͷڞ༗ • ඞͣʹཱ͔ͭͲ͏͔Ͱͳ͘ɼʹཱͨͳ͍͜ͱΔ • ͜Ε·Ͱͷؔ࿈ٕज़ͱٕज़ͷྺ࢙͔Βཧత͋Δ͍ࣗ໌ͳࣝΛಋ͘
• ࣾ֎ʹͦͷݟΛڞ༗͠ɼ͞ΒʹҰൠԽɾఆࣜԽͯ͠վળ͍ͯ͘͠ • ࣾͰจͳͲʹॻ͖͖Εͳ͍ຊԻͱݐલ͔ͬ͠Γͱڞ༗ • จܗ͚ࣜͩͰͳ͘ΑΓձࣾʹ࠷దԽͨ͠ݚڀՌࣝΛఏڙ͢Δ 9 ΫϥυɾϗεςΟϯάاۀͷݚڀऀͱ
• ࣗͨͪͷҙࣝείʔϓͷதͰɼެ։͍ͯ͠Δٕज़ΛਅࣅΔ͚ͩͰղ ܾͰ͖ͳ͍͜ͱ͕૿͖͍͑ͯͯΔ • ΤϯδχΞͰΞΠσΞΛग़ͯ͠ɼΛղܾͨ͠Γ৽͍͠ϓϩμΫτΛ࡞Δ • ͜ΕҰछͷݚڀ։ൃͰ͋Γଟ͘ͷձ͕ࣾͨΓલʹऔΓΜͰ͍Δ • ͜͜ͰऔΓ·Ε͍ͯΔ͜ͱͷՁܭΓΕͳ͍΄ͲૉΒ͍͠ •
ͦͷऔΓΈ͕ຊʹਖ਼͍͔͠Ͳ͏͔ɼཧ͠ධՁ͍ͯ͘͜͠ͱࠔ • ͏·͍ͬͨ͘ղܾϓϩμΫτΛ܁Γฦ͠ૂͬͯߦ͏͜ͱ͍͠ • औΓΈͷόΠΞε͕͔͔ͬͯ͠·͏Մೳੑ → ΈΜͳͰؒҧ͏ 10 ࣮ΤϯδχΞݚڀ૬ͷ͜ͱΛ͍ͬͯΔ
• ݚڀऀࣾͷٕज़ਐԽ՝ΛݴޠԽɾఆࣜԽɾධՁ͠ɼैདྷͷؔ࿈ٕज़ͱ ͷࠩΛ٬؍తʹݟग़ͯ͠ɼ৽ͨͳࣝɾӥஐͱཱͯͤ͠͞Δ͜ͱࣄ • ͜ΕΒͷࣝߏ͕ղ໌͞Ε͓ͯΓɼߋʹޮతʹٞɾ࠶ར༻Մೳ • ྑ͍՝ղܾϓϩμΫτΛ࠶ͼૂͬͯ࡞Γग़ͤΔΑ͏ʹ͢Δ • ʑΤϯδχΞ͕औΓΜͰ͍ΔࠩผԽΛαϙʔτͨ͠ΓɼͦΕΛઐʹऔ ΓΜͰղ໌ͨ͠ΓɼࣗΒఏҊ͠ɼݴޠԽɾҰൠԽͯ͠ݚڀίϛϡχςΟʹ
མͱ͠ࠐΈܧଓతʹվળ͢Δ୲ → όΠΞεͷআڈʹͳΔ • ςΫϊϩδʔ͕ࣄۀΛࠩผԽ͢Δاۀɾ࣌ʹগͰ͍Δͱྑ͍ 11 ͦ͜ͰใܥݚڀऀɾݚڀνʔϜͷొ
• ࣾͰͷ৴པؔͱཱͪҐஔΛߏங͍ͯ͘͜͠ͱ͕ͱʹ͔͘େࣄ • ٕज़త؍Ͱਖ਼͍͠վળͰ͔͋ͬͨͷॿݴ͞ΒͳΔఏҊ • ϓϩμΫγϣϯڥͰ݁Ռ͕ग़͍ͯΔ͔ΛධՁ͢ΔͨΊͷํ๏ͷఏҊ • ͦͷՌΛҰ൪͍ͬͯΔͷͱͯࣾ͠ڞ༗ɾ૬ஊ͞ΕΔଘࡏ • ͨΓલʹ࿈ܞ͕ੜ͡ΔݚڀऀɾνʔϜʹม͍͑ͯ͘ʢޙड़ʣ
12 اۀʹ͓͍ͯνʔϜͱׂͯ͠ΛՌͨ͢
ݚڀऀͷߩݙͱ
• ࣾͷαʔϏεϓϩμΫτɼձࣾʹରͯ͠ߩݙ͕ؒతͰ͋Δɼͱ͍͏Έ • ࣮αʔϏεෳͷؒతߩݙ͕བྷΈ߹࣮ͬͯݱ͞Ε͍ͯΔ • αʔϏεͷίʔυΛॻ͘͜ͱߩݙͱ͍͏Θ͚Ͱͳ͍ • αʔϏεΛੈʹ͛ͨΓɼݟͤํΛ͠ͳ͍ͱΘΕͳ͍࣌ • ܦӦɾใɾӦۀɾϚʔέςΟϯάɾόοΫΦϑΟεɾCSͳͲ༷ʑͳؒ
తߩݙ͕Έ߹Θͬͯ͞αʔϏεΛ࡞Γࢧ͍͑ͯΔ • ݚڀ՝ͷࠜຊతղܾະདྷͷαʔϏεʹඞཁͳٕज़ɼཁ݅ͳͲΛߟ͑ɼܗ ࣜͱͯ͠Ξτϓοτ͠ڞ༗͍ͯ͘͠ → ٕज़ϒϥϯσΟϯάʹͳΔ 14 اۀݚڀऀͷձࣾɾࣾձͷߩݙͱ
• ݚڀΛ͢Δ͜ͱͪΖΜɼͦΕҎ֎ʹͳʹ͕͋Δ͔ʁ • কདྷతʹٻΊΒΕΔநతͳٞʹ͍ͭͯదʹݴޠԽͯ͠ڞ༗͢Δ • ٬؍తʹٕज़Λଊ͑ͯධՁ͢Δ܇࿅Λ͍ͯ͠ΔͨΊɼࣾͷٞʹԠ༻ 15 اۀݚڀऀͷߩݙͷྫʢ̍ʣ
16 ٠ݚڀһʹΑΔΦϑΟεॖୀͷߟ ίϩφՒʹΛൃͨ͠ΦϑΟεݟ͠ʹؔ͢ΔҰߟ, https://research.sakura.ad.jp/2020/09/30/office-degeneracy/
• ݱࡏͷάϩʔόϧج४Ͱͷ࠷৽ͷݚڀʹ͍ͭͯཧղ͠ڞ༗͢Δ • state-of-the-artɼϕʔεϥΠϯɼຊޠͰ·ͱ·͍ͬͯͳ͍࠷৽ٕज़ใ • ࠜຊղܾʹඞཁͳෳࡶͳٕज़Λܟԕ͞Εͳ͍Α͏ʹదʹ͑ΔྗΛཆ͏ • ٕज़తͳධՁαʔϏεԽʹ͏ٙʹ͑ΒΕΔଘࡏʹͳΔ • ઐ֎ͷਓʹΘ͔Γ͘͢ݴޠԽͯ͠આ໌͢ΔྗΛཆ͏
• ઐԽͱͯ͠པΒΕձࣾӡӦʹ͓͚ΔબࢶΛఏڙ͢ΔྗΛཆ͏ • Βͳ͍ΛΒͳ͍ঢ়ଶʹࣝΛ༩͑ߩݙ͢Δ 17 اۀݚڀऀͷߩݙͷྫʢ̎ʣ
18 ٠ݚڀһʹΑΔΤοδϑΥάͱະདྷ ʮΤοδɾϑΥάίϯϐϡʔςΟϯάͷΓཱͪͱωοτϫʔΫΠϯϑϥͷ͜Ε͔Βʯߨԋࢿྉެ։ IUUQTSFTFBSDITBLVSBBEKQPWFSWJFXPGFEHFGPH
19 Ώ͏͏͖ݚڀһʹΑΔ࠷ઌݚڀͷղઆ Ϋϥυܥͷࠃࡍձٞ*&&&$-06%ࢀՃ IUUQTCMPHZVVLJPFOUSZJFFFDMPVE
20 ͭΔʔݚڀһʹΑΔҼՌ୳ࡧख๏ͷղઆ άϥϑΟΧϧϞσϧʹجͮ͘ҼՌ୳ࡧख๏ͷௐࠪ IUUQTCMPHUTVSVCFFUFDIFOUSZ
21 ۽୩ݚڀһʹΑΔ܈ೳΫϥελϦϯά ࣗࢄڠௐγεςϜతໝͱ܈ೳΫϥελϦϯά IUUQTLVNBHBMMJVNIBUFOBCMPHDPNFOUSZ
• ࣾ֎͚ͩͰͳࣾ͘ʹಋ͖ग़ͨ͠ݟݚڀՌΛڞ༗ • ҙ֎ͱݚڀऀΛ͍ͬͯΔͱࣾͰͷڞ༗͕͓Ζ͔ͦʹͳΓ͕ͪ • ڞ༗Λ௨ͯࣾ͡Ͱؾܰʹίϛϡχέʔγϣϯ͕Ͱ͖ΔؔੑΛߏங͢Δ • ͦͷ্ͰɼݚڀՌཧ͞Εͨ৽͍͠ݟΛ͜Ε͔Βͷٕज़ํ αʔϏεઃܭࡦఆɼձࣾํͷࢀߟʹͯ͠Β͏ •
࠷৽ͷٕज़τϨϯυະདྷͷߟʹ͍ͭͯબࢶΛఏڙ͢Δ • ΞτϓοτΛ௨ͯ͡اۀͷٕज़ϒϥϯσΟϯάϓϨθϯε্ 22 اۀݚڀऀͷߩݙͷ·ͱΊ
3. Πϯϑϥͷاۀݚڀͷ͜Ε͔Β
1. νʔϜͱͯ͠ͷݚڀ։ൃ 2. ઃఆͱιϧόʔͳͲͷίϥϘϨʔγϣϯ 3. ܦӦํαʔϏεʹݚڀ׆ಈΛՃ͍͑ͯ͘ྗ 24 اۀݚڀऀɾݚڀॴӡӦʹٻΊΒΕΔ͜ͱ
νʔϜͱͯ͠ͷݚڀ։ൃ
26 1. νʔϜͱͯ͠ͷݚڀ։ൃ • ΤϯδχΞ্͕Γͷࣗݚڀ։ൃʹ༗རͩͱࢥ͍ͬͯͨ • ͠Β͘ݱ࣮తͰۙͷҙ͕ࣝੜͯ͡༗ར͔͠Εͳ͍ • ݚڀΛΓ࢝ΊΔͱΤϯδχΞϦϯάͷ͕࣌ؒݮΔ •
͕͍ࣗͬͯΔͱࢥ͍ͬͯΔΤϯδχΞϦϯάʹຯظݶ͕͋Δ • ؾ͕ͭ͘ͱݱͷٕज़େ͖͘มΘ͓ͬͯΓࡉ෦͕ཧղͰ͖ͳ͘ͳΔ • ࣗෛ͕ٕज़Λநతʹଊ͑͗ͯ͢ಉ͡ͷͩͱؒҧͬͯஅͨ͠Γ͢Δ • ݚڀͷΞΠσΞ͕ݶఆ͞Εͯ͠·ͬͨΓࠓͰ͖Δ͜ͱʹͩ͜ΘΓ͕ͪ
27 1. νʔϜͱͯ͠ͷݚڀ։ൃ • νʔϜͱͯ͠ݚڀ։ൃͷ୲ͭͭ͠ڠྗͯ͠औΓΉ͖ • ٬һݚڀһͱͯ͠ݱͷऔΓΈΛߦ͍ͬͯΔΤϯδχΞͱҰॹʹΔ • mizzy͞Μ੨ࢁ͞ΜͱҰॹʹٞ͢Δ͜ͱͰΪϟοϓΛཧղ͢Δ •
গͳ͘ͱΤϯδχΞ͚ͷࠃࡍΧϯϑΝϨϯεʹࢀՃͯٞ͢͠Δ • ݱͰΤϯδχΞϦϯάΛͯ͠ͳͯ͘ಘΒΕΔใҙࣝతʹಘΔ • USENIX LISAɺKubeConɺOpen Source/Linux SummitɺSREconͳͲ • ҙࣝతʹ͚ࣾͷڞ༗ͱνʔϜؒͰͷ৴པੑߏஙΛ৺͕͚Δ
ઃఆͱιϧόʔͳͲͷ ίϥϘϨʔγϣϯ
• ۙͷIEEE SERVICES / CLOUD 2020ͳͲࠃࡍձٞʹ͓͚ΔτϨϯυ • ػցֶशཧϞσϧɼ౷ܭతख๏Λιϧόʔͱͨ͠՝ղܾ • ιϧόʔͷબͷਖ਼֬ͳࠜڌΑΓ݁Ռͱͯ͠ͷ༗ޮੑͷධՁ
• ࣌എܠʹ߹ΘͤͨιϧόʔͷબʹΑͬͯ·ͣ݁ՌΛग़͢ϑΣʔζʁ • ઃఆιϧόʔߴͳઐత͕ࣝඞཁͳ࣌ʹͳΔ • ͦΕΛશͯҰਓͰΔ͖ͳͷ͔ʁ 29 2. ઃఆͱιϧόʔͳͲͷίϥϘϨʔγϣϯ
30 Ώ͏͏͖ͱͭΔʔͷίϥϘϨʔγϣϯ ϚΠΫϩαʔϏεʹ͓͚Δੑೳҟৗͷਝͳஅʹ͍ͨ࣌ܥྻσʔλͷ࣍ݩݮख๏ IUUQTCMPHZVVLJPFOUSZUTJGUFS
• ઃఆͷಘҙͳઐՈͱιϧόʔ(ػցֶशཧʣͷઐՈͷίϥϘ • ઃఆ͕Ͱ͖Δ͜ͱͱιϧόʔͷ͕ࣝ๛Ͱ͋Δ͜ͱ͘͠Ձ͕͋Δ • ઃఆ͕Ͱ͖ͳ͍ͱݚڀʹͳΒͳ͍ͷͰ͋Εɼιϧόʔ͕ͳͯ͘ݚڀ ʹͳΒͳ͍࣌ • ͬͱࡉԽͨ͠ಘҙͷίϥϘϨʔγϣϯඞཁʹͳ͍ͬͯ͘ •
ΤϯδχΞͷΞτϓοτ͍ͬͯΔ͜ͱͷՁΛӬଓԽͯ͠ӥஐʹ͢Δ • จΛॻ͘ྗɾݱͷࣝɾ՝Λཧ͢ΔྗɾՌΛ͛Δྗ͢Β୲ • ݸਓͰͯ͢ΛΔͷͰͳ͘νʔϜͰࡉ͔͘ڠྗͯ͠ݚڀՌΛग़࣌͢ 31 2. ઃఆͱιϧόʔͳͲͷίϥϘϨʔγϣϯ
ܦӦαʔϏεͷํʹݚڀ׆ಈΛ Ճ͍͑ͯ͘ྗ
• اۀݚڀͷݸਓɾձࣾɾࣾձͷߩݙՁΛదʹݴޠԽ͢Δ • ݚڀͷՁʁจΛॻ͘ҙຯɼࠃࡍձٞͷҙຯʁձࣾͷߩݙʁ • ͜ͷεϥΠυ͕ͦͷҰͭͷߩݙʹͳΕ͍ • اۀͷςΫϊϩδʔઓུʹ͓͍ͯະདྷͷܭըͱݚڀܭըΛ༥߹ͤ͞Δ • ͱʹ͔ࣾ͘ͱͷڞ༗׆ಈܧଓ͠ɼগͣͭ͠৴པؔΛ࡞Δ
• αʔϏεɾϓϩμΫτΛߟ͑Δ্Ͱݚڀ৫ͱٞ͢Δ͜ͱΛͨΓલʹ • ݚڀ։ൃ৫ಉ͡ձࣾɾಉ͡νʔϜͰ͍ؔ͠Ͱ͋Δͣ • લड़ͨ͠ଟ໘తͰؒతͳߩݙΛΈ߹Θ͍ͤͯ͘ 33 3. ܦӦαʔϏεͷํʹݚڀ׆ಈΛՃ͍͑ͯ͘ྗ
• ݚڀΛαʔϏεɾϓϩμΫτʹ׆͔͠ʹ͍͘ͷͰͳ͍ • ݚڀνʔϜͱαʔϏε։ൃͦͷଞνʔϜͱ৴པΛߏஙͰ͖͍ͯͳ͍͔Β • ܦӦํαʔϏεͷߩݙʹݚڀ͕Ͳ͏ҙ͕ٛ͋Δ͔ΛݴޠԽ͖͢ • ձࣾʹ͓͚ΔاۀݚڀͷՁΛ·͕ͣࣗࣗཧղ͢Δͱ͜Ζ͔Β • ઐతͰ͍͠վળ࣮ݱίετΛ୲อͰ͖ΔઐੑΛ࣋ͪݴޠԽ͢Δ
• ৴པ͕ؔ͋ΕͨΓલʹ৫ͱׂͯ͠ΛຒΊ߹͑Δͣ • ͳΜͱͳͬͯ͘ΈͯͦͷޮՌΘ͔Βͳ͍ͱ͜Ζ͔ΒʮΘ͔Δʯະདྷ • ͦΕΛҾͬுΓαϙʔτ͍ͯ͘͠νʔϜ͕͜Ε͔ΒͷاۀݚڀνʔϜ 34 3. ܦӦαʔϏεͷํʹݚڀ׆ಈΛՃ͍͑ͯ͘ྗ
35 3. ܦӦઓུʹݚڀ׆ಈΛՃ͍͑ͯ͘ྗ
4. ·ͱΊ
• ·ͩզʑऔΓ͏ͱͯ͠ؤு͍ͬͯΔͱ͜Ζ • ͜ͷΑ͏ͳεϥΠυͷݴޠԽҰൠԽ·ͨݚڀऀͱͯ͠ഓͬͨεΩϧ • اۀݚڀͷՁߩݙɼ͜Ε͔Βͷاۀݚڀ׆ಈʹ͍ͭͯཧղ͠ߦಈ͍ͯ͘͠ • ݚڀνʔϜಛผͳଘࡏͰͳ͘ձࣾΛ௨ͯࣾ͠ձʹߩݙ͢ΔͨΊͷҰνʔϜ • νʔϜؒͰͷ৴པؔΛߏஙׂ͠Λཧղͯ͠Β͍ͳ͕ΒҰॹʹ͍ͬͯ͘
• ϓϩμΫταʔϏεΛͦΕͧΕͷׂ͔ΒҰॹʹͨΓલʹ࡞Δະདྷ • ʮͱΓ͋͑ͣΔʯ͔ΒʮͶΒͬͯΕΔʯ৫ 37 ·ͱΊ
• TCPriv: ଓݩϓϩηεͷΦʔφใʹجͮ͘TCPΛհͨ͠ಁաతͳݖݶ 38 ͓·͚ɿ࠷৽ͷࣗͷݚڀͷਐḿհ IUUQTXXXESPQCPYDPNTMKBCYBGF[VTTDMPVEUDQQSJWQEG EM