Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Smoozの開発舞台裏 @ BP Study 2016.11.11
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yuichi Kato
May 16, 2017
Science
1
410
Smoozの開発舞台裏 @ BP Study 2016.11.11
Yuichi Kato
May 16, 2017
Tweet
Share
More Decks by Yuichi Kato
See All by Yuichi Kato
スマホブラウザ「Smooz」のマネタイズで得た知見
maxkato
11
5.6k
Creating tools for the future
maxkato
0
3.1k
ブラウザアプリ『Smooz』を作る中で会得した WKWebviewの3つのTips
maxkato
6
2.5k
Other Decks in Science
See All in Science
Accelerated Computing for Climate forecast
inureyes
PRO
0
150
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
150
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
190
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
380
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
290
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.9k
2025-05-31-pycon_italia
sofievl
0
140
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
1.7k
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
610
検索と推論タスクに関する論文の紹介
ynakano
1
150
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
96
14k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
Un-Boring Meetings
codingconduct
0
200
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Writing Fast Ruby
sferik
630
62k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
920
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Mobile First: as difficult as doing things right
swwweet
225
10k
Code Reviewing Like a Champion
maltzj
527
40k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
1 ΞεπʔϧגࣜձࣾɹՃ౻༤Ұ Smoozͷ։ൃཪ
2 1. Smoozͷ͝հ 2. ۀ·ͰͷಓͷΓ 3. ࠔ 4. ϩʔϯνɾάϩʔε 5.
ࠓޙ
3 Search Entertainment ݕࡧΛͬͱָ͘͠
4 ݕࡧ ใ
5 ݕࡧ ใ ʰߦ͖ࢭ·Γʱͷϒϥδϯά
6 ਅాؙΛݕࡧ מਖ਼༤Λݕࡧ ιʔγϟϧͰͷ Ԡ͕Γ͍ͨ מਖ਼༤ͷಈը ݟ͍ͨ ࢹௌʁ ڈͷେՏʁ 4NPP[ʹ͓͚Δϒϥδϯά
7 ਅాؙΛݕࡧ מਖ਼༤Λݕࡧ ιʔγϟϧͰͷ Ԡ͕Γ͍ͨ מਖ਼༤ͷಈը ݟ͍ͨ ࢹௌʁ ڈͷେՏʁ 4NPP[ʹ͓͚Δϒϥδϯά
ʰҶͮΔࣜʱϒϥδϯά
8 ʰҶͮΔϒϥδϯάʱΛ ࣮ݱ͢Δ͘͠Έ 6* "* ιʔγϟϧ
ࢸۃͷλϒૢ࡞ ৽نλϒ Γସ͑ ด͡Δ
ࣗવݴޠղੳʹΑΔݕࡧ୯ޠ༧ଌ ಡΈࠐΈதʹݴޠղੳ ݕࡧ୯ޠΛ͓͢͢Ί
εϚʔτϒοΫϚʔΫ ίϝϯτ͕ಡΊΔ ϒοΫϚʔΫߘ λΠϜϥΠϯ
12
13 ڀۃʹͳΊΒ͔ͳϒϥδϯάମݧ
14 ݄ϦϦʔε 35,000μϯϩʔυಥഁ
15 ͳͥ৽͍͠εϚϗϒϥβ͕ ඞཁͳͷ͔ʁ ୭͕ຖ͏ΞϓϦ J1IPOFੜ࣌Ҏདྷɺେ͖ͳਐԽ͕ແ͍ ςΫϊϩδʔͷେ͖ͳਐา
16 12% 88% ࠃεϚϗϒϥβࢢɹ ສϢʔβʔ 600ສ Ϣʔβʔ σεΫτοϓɾϒϥβʢຊʣ ࢀߟ 12%
88%
17 ͜Ε·ͰͷϒϥβͷՁͷ࡞Γํ ϨϯμϦϯάΤϯδϯ Ճػೳ
18 4NPP[ͷՁͷΓํ ϨϯμϦϯάΤϯδϯ 8FC,JU ৽͍͠Ϣʔβʔମݧ User Interface AI ιʔγϟϧ
19 ϒϥβ͕ݡ͘ͳΔͱ ωοτ͕ͬͱָ͘͠ͳΔ
20 ݕࡧީิ ຊจநग़ ϥϯΫ͚ ؔ࿈୯ޠநग़ ͔ͪॻ͖ 63- ࣗવݴޠॲཧ ݕࡧ୯ޠϦίϝϯσʔγϣϯ
21 νʔϜ CEO / Engineer Engineer Designer ౬ઙలو ιχʔɾָఱͰϓϩμΫτϚ ωδϝϯτʹ̔ैࣄͨ͠ޙɺ
ಠཱɻ ݸਓͰ։ൃͨ͠TennisCore ͰAppleϕετΞϓϦΛड ɻ Ճ౻༤Ұ ࢁቌॏଇ University of Maryland, Baltimore Countyֶ࢜ɻ ໊ ݹେֶେֶӃʢଟݩཧʣ म࢜ɻήʔϜ։ൃ ɺϑϦʔ ϥϯεΛܦͯɺSmoozϓϩ δΣΫτࢀըɻ SNAPɺָఱɺϚωʔ ϑΥʔϫʔυʹͯɺଟ͘ͷ αʔϏεͷσβΠϯʹཱͪ ্͛ϑΣʔζ͔ΒܞΘΔɻ ݱࡏϚωʔϑΥϫʔυࣾʹ ۈ͠ͳ͕ΒSmoozϓϩ δΣΫτΛαϙʔτɻ
22 ۀ·ͰͷಓͷΓ
23 ΪʔΫগ
24 खͷͻΒͷ্ʹใΛͷͤΔָ͠͞
25 ιχʔͰੜ࢈ཧ
26 ։ൃɾ ϦʔυλΠϜ ൢചऴྃ ग़ՙ ։ൃ։࢝ ۚܕ ಋମ औΓ ྔ
N N-5 N-4 N-10 ಋମ TO N+10 N-1 ྔ࢈ ൃ ൃ
27 ݟࠐΈ ࣮ ྦྷܭ100ສ Πχγϟϧ 40ສ ઐ༻෦ ൃࡁΈ 50ສ ൢച࣮
30ສ ྫ͑ɾɾɾ
28 ઐ༻෦ࠩผԽϋΠϦεΫ ൚༻෦ίϞσΟςΟϩʔϦεΫ
29 ιχʔɾΤϦΫιϯͰاը
30 ࡾํྑ͠ϢʔβʔϑΝʔετ
31 ΠϊϕʔγϣϯͷδϨϯϚ
32 ָఱͰϓϩμΫτϚωʔδϟʔ
33 ਓͰ࡞ͬͯ̓ԯਓʹΛಧ͚Δ
34 ىۀՈಛผͳਓؒͰͳ͍
35 ݸਓ։ൃ TennisCore
36 Ξεπʔϧגࣜձࣾۀ ʙʣ
37 ϛογϣϯ ਓؒͷೳྗΛ֦ு͢Δ ະདྷͷಓ۩ΛΔ
38 4NPP[ͷཪ
39 ͍͔ؒͭ͘ͷϓϩμΫτΛࢼ࡞ ˣ Ϧηοτ ˣ ࢼ࡞࠶։ ˣ 4NPP[
40 νʔϜ่͕յͨͬͯ͠ɺਐΈଓ͚Δ͔͠ແ͍
41 J048,8FC7JFXͷ̏ͭͷ5JQT
42 डୗΛଓ͚Δ͔ɺࢿۚௐୡ͢Δ͔
43 ͷͮ͘Γϓϩηεͱπʔϧͷ߆Γ
44 اըɾσβΠϯ λεΫཧ վળ
45 ϓϩμΫτεϖοΫ λεΫνέοτ
46 ϓϩμΫτʹࠐΊͨࠢΛετʔϦʔʹ͢Δ
47 ϏσΦͱϓϩμΫτΛ༻ҙ
48 ϚεͰͳ͘ݸਓʹಧ͚Δ
49
50 App Store τοϓܝࡌ
51
52 όϒϧͷޙ
53 69վળ άϩʔεɾϋοΫ ࠂ άϩʔεϋοΫ άϩʔεͷߟ͑ํ 13 PMF
54 Ճओٛͱݮओٛͷόϥϯε
55 Value Proposition ग़ՙ࣌ ͷՁ Ճओٛ ݮओٛ
56 1 2 3 4 5 6 5.7ճىಈ/Day
57 13 27 40 53 67 80 71PV/user ϝχϡʔʹURLίϐʔɺ࠶ಡࠐ ͷϝχϡʔՃ
λϒͷݻఆɺӾཡཤྺɺ Ґஔใऔಘ
58 ϒϥβ͕ݡ͘ͳΔͱ ωοτ͕ͬͱָ͘͠ͳΔ
59 "QQFOEJY
1Ϧςϯγϣϯɹ8% up 7Ϧςϯγϣϯɹ7% up
61 ϒϥβ͕ݡ͘ͳΔͱ ωοτ͕ͬͱָ͘͠ͳΔ
62 "QQFOEJY
63 ͖ͭ͵͚ͨײಈΛͭ͘Δ
64 ΞϓϦνϟοτ αϙʔτ ฦ৴
65 Ξϯέʔτ Mixpanel Notification
66 ߋ৽௨ ϨϏϡʔ
ίΞ Ϣʔβʔ
68 ͖ͳϓϩμΫτͮ͘ΓΛͰ͖Δͤ
69 ࠓޙͷల։
70 ΤϯδχΞืूͯ͠·͢ʂ 3BJMTɺࣗવݴޠॲཧɺػցֶश J04ɺ"OESPJE
71 ϒϥβ͕ݡ͘ͳΔͱ ωοτ͕ͬͱָ͘͠ͳΔ
72 ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ɻ