Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SQLModel 入門
Search
MIKIO KUBO
July 03, 2025
Programming
0
670
SQLModel 入門
SQLModel 入門
### PydanticとSQLAlchemyの"いいとこ取り"!
MIKIO KUBO
July 03, 2025
Tweet
Share
More Decks by MIKIO KUBO
See All by MIKIO KUBO
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook (Final Version)
mickey_kubo
0
18
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook (Short Version)
mickey_kubo
1
19
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook
mickey_kubo
1
65
History and Future of MO+AI
mickey_kubo
1
53
History and Future of MO+AI (Fusion of Mathematical Optimization and Artificial Intelligence)
mickey_kubo
1
17
Next.js 入門解説: Reactとの決定的な違いとApp Routerに基づくモダンWeb開発
mickey_kubo
1
75
Google Antigravity and Vibe Coding: Agentic Development Guide
mickey_kubo
2
190
React完全入門
mickey_kubo
1
73
TypeScript初心者向け完全ガイド
mickey_kubo
1
68
Other Decks in Programming
See All in Programming
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
9
1.1k
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
130
宅宅自以為的浪漫:跟 AI 一起為自己辦的研討會寫一個售票系統
eddie
0
500
AIコーディングエージェント(skywork)
kondai24
0
160
Socio-Technical Evolution: Growing an Architecture and Its Organization for Fast Flow
cer
PRO
0
330
AIコーディングエージェント(NotebookLM)
kondai24
0
180
ゲームの物理 剛体編
fadis
0
330
CSC509 Lecture 14
javiergs
PRO
0
220
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
450
AIエージェントを活かすPM術 AI駆動開発の現場から
gyuta
0
390
手が足りない!兼業データエンジニアに必要だったアーキテクチャと立ち回り
zinkosuke
0
630
ローターアクトEクラブ アメリカンナイト:川端 柚菜 氏(Japan O.K. ローターアクトEクラブ 会長):2720 Japan O.K. ロータリーEクラブ2025年12月1日卓話
2720japanoke
0
730
Featured
See All Featured
Producing Creativity
orderedlist
PRO
348
40k
Scaling GitHub
holman
464
140k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
720
Being A Developer After 40
akosma
91
590k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Transcript
SQLModel 入門 Pydantic とSQLAlchemy の" いいとこ取り" ! 1
このスライドで学べること SQLModel とは何か? なぜ便利なのか? これまでのデータベース操作の 課題点 SQLModelを使った 基本的なCRUD 操作 (作成,
読取, 更新, 削除) リレーションシップ(テーブル間の連携)の扱い方 FastAPIと連携した実践的なWebアプリケーション開発 ゴール:このスライドだけでSQLModel の基本をマスターし、アプリ開発に活かせるようになる! 2
SQLModel ってなに? 一言でいうと、Pydantic と SQLAlchemy を融合させたライブラリです。 ライブラリ 役割 Pydantic データのバリデーション(検証)と設定管理。型ヒントでデータ構造を定義。
SQLAlchemy Pythonでデータベースを操作するためのORM (Object-Relational Mapper)。 **SQLModel** は、この2つの長所を組み合わせることで、**1つのクラス定義**で**データベース のテーブル構造**と**APIなどで使うデータモデル**の両方を表現できるようにしたものです。 開発者は、WebフレームワークFastAPIの作者でもある Sebastián Ramírez (tiangolo) 氏です。 3
これまでの課題:モデル定義の重複 SQLModelがない世界では、データベース用のモデルと、APIでやり取りするためのデータモデルを 別々に定義する必要がありました。 # データベース用 (SQLAlchemy) class UserDB(Base): __tablename__ =
'users' id = Column(Integer, primary_key=True) name = Column(String) email = Column(String) # API用 (Pydantic) class UserSchema(BaseModel): id: int name: str email: str 似たような定義が2つあり、 コードが冗長になる。 片方を修正したら、もう片方も修正する必要があり、 メンテナンスが大変。 4
SQLModel が解決すること:DRY (Don't Repeat Yourself) SQLModelを使えば、モデル定義は たった1 つで済みます。 # SQLModelなら、これでOK!
from sqlmodel import SQLModel, Field class User(SQLModel, table=True): id: int | None = Field(default=None, primary_key=True) name: str email: str SQLModel を継承し、Pydanticのように型ヒントでクラスを定義します。 table=True をつけることで、このクラスがデータベースのテーブル定義でもあることを示し ます。 コードがシンプルになり、 バグが減り、 開発効率が大幅に向上します! 5
準備をしよう:インストール まずは、必要なライブラリをインストールします。このスライドのコードは sqlmodel だけで動作し ます。 # ターミナルで実行 pip install sqlmodel
もし、FastAPIと連携するWebサーバーを動かす場合は、以下もインストールします。 ```bash pip install "fastapi[all]" ``` 6
Step 1: モデルを定義する Hero (ヒーロー)という情報を持つテーブルを作成してみましょう。 heroes.py from typing import Optional
from sqlmodel import Field, SQLModel # SQLModelを継承してモデルクラスを作成 # "table=True" で、これがDBのテーブルに対応することを示す class Hero(SQLModel, table=True): # カラム(属性)を定義 # id: 主キー(primary_key=True)。データ作成時はNoneでもOK id: Optional[int] = Field(default=None, primary_key=True) # name: 文字列型。index=Trueで検索が高速に name: str = Field(index=True) # secret_name: 文字列型 secret_name: str # age: 整数型。NoneでもOK。index=True age: Optional[int] = Field(default=None, index=True) 7
Step 2: データベースエンジンを作成する データベースとの接続を管理する「エンジン」を作成します。 ここでは、手軽なSQLiteを使います。(ファイルベースのDB) database.py from sqlmodel import create_engine
# SQLiteデータベースファイルの名前 sqlite_file_name = "database.db" # データベースURL sqlite_url = f"sqlite:///{sqlite_file_name}" # データベースエンジンを作成 # echo=Trueにすると、実行されたSQLクエリがコンソールに表示される engine = create_engine(sqlite_url, echo=True) 8
Step 3: テーブルを作成する 定義したモデル( Hero クラス)を元に、データベース内にテーブルを物理的に作成します。 main.py from sqlmodel import
SQLModel # 他のファイルからimport from database import engine from models import Hero # 先ほど定義したHeroクラス def create_db_and_tables(): # Heroモデルを含む、SQLModel.metadataに登録された # 全てのテーブルを作成する SQLModel.metadata.create_all(engine) # この関数を一度だけ実行すればテーブルが作られる if __name__ == "__main__": create_db_and_tables() print("データベースとテーブルが作成されました。") 9
Step 4: データを作成する (Create) Session を通じてデータベースと対話します。 Session は、DB操作の一連のまとまり(トランザク ション)を管理します。 main.py
# ... (import文は省略) ... from sqlmodel import Session def create_heroes(): # モデルのインスタンスを作成 hero_1 = Hero(name="Deadpond", secret_name="Dive Wilson") hero_2 = Hero(name="Spider-Boy", secret_name="Pedro Parqueador") hero_3 = Hero(name="Rusty-Man", secret_name="Tommy Sharp", age=48) # "with"構文でSessionを作成。ブロックを抜けると自動でクローズされる with Session(engine) as session: # 作成したインスタンスをセッションに追加 session.add(hero_1) session.add(hero_2) session.add(hero_3) # データベースに変更を保存(確定) session.commit() 10
Step 5: データを読み取る (Read) select() 関数でクエリを作成し、 session.exec() で実行します。 main.py #
... (import文は省略) ... from sqlmodel import select def select_heroes(): with Session(engine) as session: # Heroテーブルから全件取得するクエリを作成 statement = select(Hero) # クエリを実行し、結果を取得 heroes = session.exec(statement).all() # all()で全件をリストとして取得 for hero in heroes: print(hero) print("-" * 20) # 条件を指定して読み取る (where) statement_filtered = select(Hero).where(Hero.name == "Spider-Boy") hero = session.exec(statement_filtered).first() 11
Step 6: データを更新する (Update) 1. 更新したいデータをまず 読み取ります。 2. オブジェクトの属性値を変更します。 3.
セッションに追加して commit します。 main.py def update_hero(): with Session(engine) as session: # 更新対象のデータを取得 statement = select(Hero).where(Hero.name == "Spider-Boy") hero_to_update = session.exec(statement).one() # 1件だけ取得 # 属性値を変更 hero_to_update.age = 16 print("Updated hero (before commit):", hero_to_update) # セッションに追加してcommit session.add(hero_to_update) session.commit() # DBから最新の状態をオブジェクトに反映 12
Step 7: データを削除する (Delete) 1. 削除したいデータをまず 読み取ります。 2. session.delete() で削除対象を指定します。
3. commit して変更を確定します。 main.py def delete_hero(): with Session(engine) as session: # 削除対象のデータを取得 statement = select(Hero).where(Hero.name == "Deadpond") hero_to_delete = session.exec(statement).first() if hero_to_delete: # データを削除 session.delete(hero_to_delete) session.commit() print("Deleted hero:", hero_to_delete) else: print("Hero not found.") 13
発展: リレーションシップ (1 対多) チーム(Team)とヒーロー(Hero)の関係を定義してみましょう。1つのチームに複数のヒーローが所属 します。 from typing import List,
Optional from sqlmodel import Field, Relationship, SQLModel class Team(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str = Field(index=True) headquarters: str # "heroes"はこのチームに所属するHeroのリスト # back_populatesでお互いの関係性を紐付ける heroes: List["Hero"] = Relationship(back_populates="team") class Hero(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str = Field(index=True) secret_name: str age: Optional[int] = Field(default=None, index=True) # team_id: 外部キー。Teamテーブルのidを参照 team_id: Optional[int] = Field(default=None, foreign_key="team.id") # "team"はこのヒーローが所属するTeamオブジェクト team: Optional[Team] = Relationship(back_populates="heroes") 14
まとめ SQLModel は、Pydantic とSQLAlchemy の強力な機能をシンプルにまとめたライブラリ。 モデル定義を1 つに集約でき、DRYなコーディングが可能になる。 SQLModel , Field
, create_engine , Session , select が基本要素。 基本的なCRUD 操作 -Create(作成)、Read(読み取り)、Update(更新)、Delete(削除)- から リレーションシップまで直感的に扱える。 特にFastAPI との相性は抜群で、堅牢で効率的なWeb APIを素早く構築できる。 今日からあなたのPythonプロジェクトにSQLModelを取り入れてみましょう! 公式ドキュメント: https://sqlmodel.tiangolo.com/ 15
Q & A ご清聴ありがとうございました。 16