Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
需要関数推定入門 / Introduction to Demand Estimation
Search
mns
January 23, 2021
Research
3
1.7k
需要関数推定入門 / Introduction to Demand Estimation
Tokyo.R #89の発表資料です。
mns
January 23, 2021
Tweet
Share
More Decks by mns
See All by mns
需要関数推定入門 実践編 / Practical Demand Estimation
mns54
3
1.3k
操作変数法入門
mns54
0
2.9k
Other Decks in Research
See All in Research
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
190
When Learned Data Structures Meet Computer Vision
matsui_528
1
200
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
5.9k
Open Gateway 5GC利用への期待と不安
stellarcraft
2
130
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
310
20250624_熊本経済同友会6月例会講演
trafficbrain
1
740
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
760
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
190
説明可能な機械学習と数理最適化
kelicht
2
430
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
410
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
830
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
135
9.6k
The Language of Interfaces
destraynor
162
25k
Designing for Performance
lara
610
69k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
A Tale of Four Properties
chriscoyier
161
23k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Product Roadmaps are Hard
iamctodd
PRO
55
11k
BBQ
matthewcrist
89
9.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Transcript
需要関数推定⼊⾨ @mns_econ TokyoR #89 2021/01/23 1 5分でわかる!
⾃⼰紹介 • Twitter: @mns_econ • 経済学専攻の⼤学院⽣ • 専⾨は実証産業組織論(多分) • TokyoR
#86「操作変数法⼊⾨」 • 結局続きをやっていない • 最近tidyverseと少し仲良くなった • 挫折し続けていたpurrrをなんとか⼀応使えるようになった 2
需要関数の推定 どうしたら売上や利益増える? • 商品価格変えたら? (例: 500ml飲料の価格を150円→140円にしたら?) • バリエーション増やしたら? (例: 350mlサイズも作ったら売れる?)
→売上量と価格やその他の属性の間の関係を知りたい! 3 どうしたら利益 増えるかな…
線形回帰 • 価格変えたら売上数量どうなる?→とりあえず数量を価格に回帰 (期や市場などのセグメントt=1,...,Tの売上数量Qt と価格Pt ) ln ! = ln
! + ! • 消費者は価格だけ⾒て決めるわけじゃない→他の変数も突っ込んでみる ln ! = αln ! + ! + ! 4
線形回帰 • 消費者がこの商品を買うかには他の商品の価格も関係するよね? →他の商品の価格も突っ込んでみる (商品j=1,...,J, 期や市場などのセグメントt=1,...,Tの売上数量Qjt と価格Pjt ) ln "!
= " ln "! + " "! + , #$" "# ln #! (全部でJ2個以上パラメータある…推定できるかな…) • 他の商品の特徴も⼊れなきゃダメじゃない? → アワワ… 5
離散選択モデル(ロジットモデル) • 消費者が商品jを買うのはなんで? →他の商品kを買ったり「何も買わない」より嬉しいから! • 「効⽤」を定義すると… • 消費者iはuij ≥uik (∀k≠j)のとき商品jを買う
(ただし何も買わないときui0 =0) 6
離散選択モデル(ロジットモデル) • 「効⽤」の中⾝を以下のように定義 %"! = "! + "! + "!
+ %"! ξjt は商品jのセグメントtにおける観察できない特徴 εijt はi.i.d.なショック→消費者の異質性、消費者の認知の誤差 • εがガンベル分布(第⼀種極値分布)に従うと仮定すると… • 消費者iが商品jを買う確率 Pr %"! ≥ %#! ∀ ≠ = exp("! + "! + "! ) 1 + ∑ #$" exp(#! + #! + #! ) 7
離散選択モデル(ロジットモデル) • 消費者iが商品jを買う確率をiについて⾜し合わせていくと… → 市場シェア • ただし「何も買わない」の市場シェアも必要 → 商品jのセグメントtでの売上数量qjt を潜在的な市場規模Mt
で割る "! = "! ! , &! = 1 − , "'( ) "! • 前ページの選択確率をシェアとすると !" = exp(!" + !" + !" ) 1 + ∑#$! exp(#" + #" + #" ) , %" = 1 1 + ∑#$! exp(#" + #" + #" ) 8
離散選択モデル(ロジットモデル) • sjt をs0t で割ると… "! &! = exp("! +
"! + "! ) • 対数を取ると… ln "! − ln &! = "! + "! + "! ξjt は商品jのセグメントtにおける観察できない特徴 • ξjt を誤差項と捉えると… →線形回帰できる! • パラメータも少ないしなんか推定できそう! 9
でも問題点も… • ξjt をただの誤差項として捉えていいの? • 変数として捉えられないブランド⼒とかあるんじゃない? → 解決策: パネルデータを使って商品固定効果をモデルに⼊れる •
IIA特性の問題点: 商品jと商品kのシェアの⽐は他の商品lの価格や属性が変 わっても変化しない • コカコーラの値段が上がったときペプシコーラとカルピスウォーターの市場シェア 同じ割合で⼤きくなる → 解決策: nested logitモデルなど • 「価格→数量」と「数量→価格」の両⽅の因果関係あるよね? • 数量→価格の因果関係が成り⽴っていないと正しく推定できない → 解決策: 操作変数法 10
次回予告 • ロジットモデルの問題点を解決編 もしくは… • 理論はもういいからとりあえずRで実装編 11
さらに知りたい • 北野(2012) 「需要関数の推定−CPRCハンドブックシリーズ No.3−」 ⽇本語での需要関数推定の説明としてはかなり詳しい。 • Nevo (2000) “A
Practitionerʼs Guide to Estimation of Random- coefficients Logit Models of Demand” 今回紹介したロジットモデルの発展形である「ランダム係数モデル」の使 ⽤法を解説した論⽂。ロジットモデルの問題点や解決策を論じている。 12