Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
需要関数推定入門 / Introduction to Demand Estimation
Search
mns
January 23, 2021
Research
3
1.7k
需要関数推定入門 / Introduction to Demand Estimation
Tokyo.R #89の発表資料です。
mns
January 23, 2021
Tweet
Share
More Decks by mns
See All by mns
需要関数推定入門 実践編 / Practical Demand Estimation
mns54
3
1.3k
操作変数法入門
mns54
0
3k
Other Decks in Research
See All in Research
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.5k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
720
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
160
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
280
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
330
POI: Proof of Identity
katsyoshi
0
140
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
140
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
140
Featured
See All Featured
New Earth Scene 8
popppiees
1
1.5k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
The untapped power of vector embeddings
frankvandijk
1
1.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
A better future with KSS
kneath
240
18k
The agentic SEO stack - context over prompts
schlessera
0
640
Making Projects Easy
brettharned
120
6.6k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
68
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
エンジニアに許された特別な時間の終わり
watany
106
230k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
10
1.1k
Transcript
需要関数推定⼊⾨ @mns_econ TokyoR #89 2021/01/23 1 5分でわかる!
⾃⼰紹介 • Twitter: @mns_econ • 経済学専攻の⼤学院⽣ • 専⾨は実証産業組織論(多分) • TokyoR
#86「操作変数法⼊⾨」 • 結局続きをやっていない • 最近tidyverseと少し仲良くなった • 挫折し続けていたpurrrをなんとか⼀応使えるようになった 2
需要関数の推定 どうしたら売上や利益増える? • 商品価格変えたら? (例: 500ml飲料の価格を150円→140円にしたら?) • バリエーション増やしたら? (例: 350mlサイズも作ったら売れる?)
→売上量と価格やその他の属性の間の関係を知りたい! 3 どうしたら利益 増えるかな…
線形回帰 • 価格変えたら売上数量どうなる?→とりあえず数量を価格に回帰 (期や市場などのセグメントt=1,...,Tの売上数量Qt と価格Pt ) ln ! = ln
! + ! • 消費者は価格だけ⾒て決めるわけじゃない→他の変数も突っ込んでみる ln ! = αln ! + ! + ! 4
線形回帰 • 消費者がこの商品を買うかには他の商品の価格も関係するよね? →他の商品の価格も突っ込んでみる (商品j=1,...,J, 期や市場などのセグメントt=1,...,Tの売上数量Qjt と価格Pjt ) ln "!
= " ln "! + " "! + , #$" "# ln #! (全部でJ2個以上パラメータある…推定できるかな…) • 他の商品の特徴も⼊れなきゃダメじゃない? → アワワ… 5
離散選択モデル(ロジットモデル) • 消費者が商品jを買うのはなんで? →他の商品kを買ったり「何も買わない」より嬉しいから! • 「効⽤」を定義すると… • 消費者iはuij ≥uik (∀k≠j)のとき商品jを買う
(ただし何も買わないときui0 =0) 6
離散選択モデル(ロジットモデル) • 「効⽤」の中⾝を以下のように定義 %"! = "! + "! + "!
+ %"! ξjt は商品jのセグメントtにおける観察できない特徴 εijt はi.i.d.なショック→消費者の異質性、消費者の認知の誤差 • εがガンベル分布(第⼀種極値分布)に従うと仮定すると… • 消費者iが商品jを買う確率 Pr %"! ≥ %#! ∀ ≠ = exp("! + "! + "! ) 1 + ∑ #$" exp(#! + #! + #! ) 7
離散選択モデル(ロジットモデル) • 消費者iが商品jを買う確率をiについて⾜し合わせていくと… → 市場シェア • ただし「何も買わない」の市場シェアも必要 → 商品jのセグメントtでの売上数量qjt を潜在的な市場規模Mt
で割る "! = "! ! , &! = 1 − , "'( ) "! • 前ページの選択確率をシェアとすると !" = exp(!" + !" + !" ) 1 + ∑#$! exp(#" + #" + #" ) , %" = 1 1 + ∑#$! exp(#" + #" + #" ) 8
離散選択モデル(ロジットモデル) • sjt をs0t で割ると… "! &! = exp("! +
"! + "! ) • 対数を取ると… ln "! − ln &! = "! + "! + "! ξjt は商品jのセグメントtにおける観察できない特徴 • ξjt を誤差項と捉えると… →線形回帰できる! • パラメータも少ないしなんか推定できそう! 9
でも問題点も… • ξjt をただの誤差項として捉えていいの? • 変数として捉えられないブランド⼒とかあるんじゃない? → 解決策: パネルデータを使って商品固定効果をモデルに⼊れる •
IIA特性の問題点: 商品jと商品kのシェアの⽐は他の商品lの価格や属性が変 わっても変化しない • コカコーラの値段が上がったときペプシコーラとカルピスウォーターの市場シェア 同じ割合で⼤きくなる → 解決策: nested logitモデルなど • 「価格→数量」と「数量→価格」の両⽅の因果関係あるよね? • 数量→価格の因果関係が成り⽴っていないと正しく推定できない → 解決策: 操作変数法 10
次回予告 • ロジットモデルの問題点を解決編 もしくは… • 理論はもういいからとりあえずRで実装編 11
さらに知りたい • 北野(2012) 「需要関数の推定−CPRCハンドブックシリーズ No.3−」 ⽇本語での需要関数推定の説明としてはかなり詳しい。 • Nevo (2000) “A
Practitionerʼs Guide to Estimation of Random- coefficients Logit Models of Demand” 今回紹介したロジットモデルの発展形である「ランダム係数モデル」の使 ⽤法を解説した論⽂。ロジットモデルの問題点や解決策を論じている。 12