Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
需要関数推定入門 / Introduction to Demand Estimation
Search
mns
January 23, 2021
Research
3
1.5k
需要関数推定入門 / Introduction to Demand Estimation
Tokyo.R #89の発表資料です。
mns
January 23, 2021
Tweet
Share
More Decks by mns
See All by mns
需要関数推定入門 実践編 / Practical Demand Estimation
mns54
3
1.2k
操作変数法入門
mns54
0
2.6k
Other Decks in Research
See All in Research
アプリケーションから知るモデルマージ
maguro27
0
240
湯村研究室の紹介2024 / yumulab2024
yumulab
0
370
打率7割を実現する、プロダクトディスカバリーの7つの極意(pmconf2024)
geshi0820
0
240
Neural Fieldの紹介
nnchiba
1
570
[輪講] Transformer Layers as Painters
nk35jk
4
600
LLM 시대의 Compliance: Safety & Security
huffon
0
510
Whoisの闇
hirachan
3
240
データサイエンティストをめぐる環境の違い 2024年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
980
PostgreSQLにおける分散トレーシングの現在 - 第50回PostgreSQLアンカンファレンス
seinoyu
0
200
Weekly AI Agents News! 12月号 論文のアーカイブ
masatoto
0
140
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
890
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
310
Featured
See All Featured
Visualization
eitanlees
146
15k
We Have a Design System, Now What?
morganepeng
51
7.4k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
A designer walks into a library…
pauljervisheath
205
24k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
260
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Building Applications with DynamoDB
mza
93
6.2k
Documentation Writing (for coders)
carmenintech
67
4.6k
The Power of CSS Pseudo Elements
geoffreycrofte
74
5.4k
Transcript
需要関数推定⼊⾨ @mns_econ TokyoR #89 2021/01/23 1 5分でわかる!
⾃⼰紹介 • Twitter: @mns_econ • 経済学専攻の⼤学院⽣ • 専⾨は実証産業組織論(多分) • TokyoR
#86「操作変数法⼊⾨」 • 結局続きをやっていない • 最近tidyverseと少し仲良くなった • 挫折し続けていたpurrrをなんとか⼀応使えるようになった 2
需要関数の推定 どうしたら売上や利益増える? • 商品価格変えたら? (例: 500ml飲料の価格を150円→140円にしたら?) • バリエーション増やしたら? (例: 350mlサイズも作ったら売れる?)
→売上量と価格やその他の属性の間の関係を知りたい! 3 どうしたら利益 増えるかな…
線形回帰 • 価格変えたら売上数量どうなる?→とりあえず数量を価格に回帰 (期や市場などのセグメントt=1,...,Tの売上数量Qt と価格Pt ) ln ! = ln
! + ! • 消費者は価格だけ⾒て決めるわけじゃない→他の変数も突っ込んでみる ln ! = αln ! + ! + ! 4
線形回帰 • 消費者がこの商品を買うかには他の商品の価格も関係するよね? →他の商品の価格も突っ込んでみる (商品j=1,...,J, 期や市場などのセグメントt=1,...,Tの売上数量Qjt と価格Pjt ) ln "!
= " ln "! + " "! + , #$" "# ln #! (全部でJ2個以上パラメータある…推定できるかな…) • 他の商品の特徴も⼊れなきゃダメじゃない? → アワワ… 5
離散選択モデル(ロジットモデル) • 消費者が商品jを買うのはなんで? →他の商品kを買ったり「何も買わない」より嬉しいから! • 「効⽤」を定義すると… • 消費者iはuij ≥uik (∀k≠j)のとき商品jを買う
(ただし何も買わないときui0 =0) 6
離散選択モデル(ロジットモデル) • 「効⽤」の中⾝を以下のように定義 %"! = "! + "! + "!
+ %"! ξjt は商品jのセグメントtにおける観察できない特徴 εijt はi.i.d.なショック→消費者の異質性、消費者の認知の誤差 • εがガンベル分布(第⼀種極値分布)に従うと仮定すると… • 消費者iが商品jを買う確率 Pr %"! ≥ %#! ∀ ≠ = exp("! + "! + "! ) 1 + ∑ #$" exp(#! + #! + #! ) 7
離散選択モデル(ロジットモデル) • 消費者iが商品jを買う確率をiについて⾜し合わせていくと… → 市場シェア • ただし「何も買わない」の市場シェアも必要 → 商品jのセグメントtでの売上数量qjt を潜在的な市場規模Mt
で割る "! = "! ! , &! = 1 − , "'( ) "! • 前ページの選択確率をシェアとすると !" = exp(!" + !" + !" ) 1 + ∑#$! exp(#" + #" + #" ) , %" = 1 1 + ∑#$! exp(#" + #" + #" ) 8
離散選択モデル(ロジットモデル) • sjt をs0t で割ると… "! &! = exp("! +
"! + "! ) • 対数を取ると… ln "! − ln &! = "! + "! + "! ξjt は商品jのセグメントtにおける観察できない特徴 • ξjt を誤差項と捉えると… →線形回帰できる! • パラメータも少ないしなんか推定できそう! 9
でも問題点も… • ξjt をただの誤差項として捉えていいの? • 変数として捉えられないブランド⼒とかあるんじゃない? → 解決策: パネルデータを使って商品固定効果をモデルに⼊れる •
IIA特性の問題点: 商品jと商品kのシェアの⽐は他の商品lの価格や属性が変 わっても変化しない • コカコーラの値段が上がったときペプシコーラとカルピスウォーターの市場シェア 同じ割合で⼤きくなる → 解決策: nested logitモデルなど • 「価格→数量」と「数量→価格」の両⽅の因果関係あるよね? • 数量→価格の因果関係が成り⽴っていないと正しく推定できない → 解決策: 操作変数法 10
次回予告 • ロジットモデルの問題点を解決編 もしくは… • 理論はもういいからとりあえずRで実装編 11
さらに知りたい • 北野(2012) 「需要関数の推定−CPRCハンドブックシリーズ No.3−」 ⽇本語での需要関数推定の説明としてはかなり詳しい。 • Nevo (2000) “A
Practitionerʼs Guide to Estimation of Random- coefficients Logit Models of Demand” 今回紹介したロジットモデルの発展形である「ランダム係数モデル」の使 ⽤法を解説した論⽂。ロジットモデルの問題点や解決策を論じている。 12