Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
需要関数推定入門 / Introduction to Demand Estimation
Search
mns
January 23, 2021
Research
3
1.5k
需要関数推定入門 / Introduction to Demand Estimation
Tokyo.R #89の発表資料です。
mns
January 23, 2021
Tweet
Share
More Decks by mns
See All by mns
需要関数推定入門 実践編 / Practical Demand Estimation
mns54
3
1.2k
操作変数法入門
mns54
0
2.7k
Other Decks in Research
See All in Research
ソフトウェア研究における脅威モデリング
laysakura
0
1.7k
LLM 시대의 Compliance: Safety & Security
huffon
0
610
大規模日本語VLM Asagi-VLMにおける合成データセットの構築とモデル実装
kuehara
5
1k
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
310
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
1.1k
Satellite Sunroof: High-res Digital Surface Models and Roof Segmentation for Global Solar Mapping
satai
3
140
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
270
PostgreSQLにおける分散トレーシングの現在 - 第50回PostgreSQLアンカンファレンス
seinoyu
0
250
DeepSeek-R1の論文から読み解く背景技術
personabb
3
350
アプリケーションから知るモデルマージ
maguro27
0
260
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.5k
複数データセットを用いた動作認識
yuyay
0
120
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
172
14k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Fireside Chat
paigeccino
35
3.2k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Designing for humans not robots
tammielis
250
25k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
134
33k
Transcript
需要関数推定⼊⾨ @mns_econ TokyoR #89 2021/01/23 1 5分でわかる!
⾃⼰紹介 • Twitter: @mns_econ • 経済学専攻の⼤学院⽣ • 専⾨は実証産業組織論(多分) • TokyoR
#86「操作変数法⼊⾨」 • 結局続きをやっていない • 最近tidyverseと少し仲良くなった • 挫折し続けていたpurrrをなんとか⼀応使えるようになった 2
需要関数の推定 どうしたら売上や利益増える? • 商品価格変えたら? (例: 500ml飲料の価格を150円→140円にしたら?) • バリエーション増やしたら? (例: 350mlサイズも作ったら売れる?)
→売上量と価格やその他の属性の間の関係を知りたい! 3 どうしたら利益 増えるかな…
線形回帰 • 価格変えたら売上数量どうなる?→とりあえず数量を価格に回帰 (期や市場などのセグメントt=1,...,Tの売上数量Qt と価格Pt ) ln ! = ln
! + ! • 消費者は価格だけ⾒て決めるわけじゃない→他の変数も突っ込んでみる ln ! = αln ! + ! + ! 4
線形回帰 • 消費者がこの商品を買うかには他の商品の価格も関係するよね? →他の商品の価格も突っ込んでみる (商品j=1,...,J, 期や市場などのセグメントt=1,...,Tの売上数量Qjt と価格Pjt ) ln "!
= " ln "! + " "! + , #$" "# ln #! (全部でJ2個以上パラメータある…推定できるかな…) • 他の商品の特徴も⼊れなきゃダメじゃない? → アワワ… 5
離散選択モデル(ロジットモデル) • 消費者が商品jを買うのはなんで? →他の商品kを買ったり「何も買わない」より嬉しいから! • 「効⽤」を定義すると… • 消費者iはuij ≥uik (∀k≠j)のとき商品jを買う
(ただし何も買わないときui0 =0) 6
離散選択モデル(ロジットモデル) • 「効⽤」の中⾝を以下のように定義 %"! = "! + "! + "!
+ %"! ξjt は商品jのセグメントtにおける観察できない特徴 εijt はi.i.d.なショック→消費者の異質性、消費者の認知の誤差 • εがガンベル分布(第⼀種極値分布)に従うと仮定すると… • 消費者iが商品jを買う確率 Pr %"! ≥ %#! ∀ ≠ = exp("! + "! + "! ) 1 + ∑ #$" exp(#! + #! + #! ) 7
離散選択モデル(ロジットモデル) • 消費者iが商品jを買う確率をiについて⾜し合わせていくと… → 市場シェア • ただし「何も買わない」の市場シェアも必要 → 商品jのセグメントtでの売上数量qjt を潜在的な市場規模Mt
で割る "! = "! ! , &! = 1 − , "'( ) "! • 前ページの選択確率をシェアとすると !" = exp(!" + !" + !" ) 1 + ∑#$! exp(#" + #" + #" ) , %" = 1 1 + ∑#$! exp(#" + #" + #" ) 8
離散選択モデル(ロジットモデル) • sjt をs0t で割ると… "! &! = exp("! +
"! + "! ) • 対数を取ると… ln "! − ln &! = "! + "! + "! ξjt は商品jのセグメントtにおける観察できない特徴 • ξjt を誤差項と捉えると… →線形回帰できる! • パラメータも少ないしなんか推定できそう! 9
でも問題点も… • ξjt をただの誤差項として捉えていいの? • 変数として捉えられないブランド⼒とかあるんじゃない? → 解決策: パネルデータを使って商品固定効果をモデルに⼊れる •
IIA特性の問題点: 商品jと商品kのシェアの⽐は他の商品lの価格や属性が変 わっても変化しない • コカコーラの値段が上がったときペプシコーラとカルピスウォーターの市場シェア 同じ割合で⼤きくなる → 解決策: nested logitモデルなど • 「価格→数量」と「数量→価格」の両⽅の因果関係あるよね? • 数量→価格の因果関係が成り⽴っていないと正しく推定できない → 解決策: 操作変数法 10
次回予告 • ロジットモデルの問題点を解決編 もしくは… • 理論はもういいからとりあえずRで実装編 11
さらに知りたい • 北野(2012) 「需要関数の推定−CPRCハンドブックシリーズ No.3−」 ⽇本語での需要関数推定の説明としてはかなり詳しい。 • Nevo (2000) “A
Practitionerʼs Guide to Estimation of Random- coefficients Logit Models of Demand” 今回紹介したロジットモデルの発展形である「ランダム係数モデル」の使 ⽤法を解説した論⽂。ロジットモデルの問題点や解決策を論じている。 12