$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Synapse: 利用者の文脈に応じて 継続的に推薦手法の選択を 最適化する推薦システム/io...
Search
monochromegane
May 24, 2019
Technology
0
890
Synapse: 利用者の文脈に応じて 継続的に推薦手法の選択を 最適化する推薦システム/iot45_synapse
第45回 情報処理学会 インターネットと運用技術研究会
https://www.ipsj.or.jp/kenkyukai/event/csec85iot45.html
monochromegane
May 24, 2019
Tweet
Share
More Decks by monochromegane
See All by monochromegane
Go言語での実装を通して学ぶLLMファインチューニングの仕組み / fukuokago22-llm-peft
monochromegane
0
160
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
240
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
5.2k
ベクトル検索システムの気持ち
monochromegane
38
12k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
230
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
300
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
1.1k
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
750
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
1.1k
Other Decks in Technology
See All in Technology
オープンデータの内製化から分かったGISデータを巡る行政の課題
naokim84
2
1.3k
2025 DORA Reportから読み解く!AIが映し出す、成果を出し続ける組織の共通点 #開発生産性_findy
takabow
2
960
私のRails開発環境
yahonda
0
170
.NET 10 のパフォーマンス改善
nenonaninu
2
4.3k
Data Hubグループ 紹介資料
sansan33
PRO
0
2.3k
adk-samples に学ぶデータ分析 LLM エージェント開発
na0
3
1.2k
事業部のプロジェクト進行と開発チームの改善の “時間軸" のすり合わせ
konifar
9
2.5k
Active Directory 勉強会 第 6 回目 Active Directory セキュリティについて学ぶ回
eurekaberry
16
5.6k
経営から紐解くデータマネジメント
pacocat
9
1.8k
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
16k
TypeScript 6.0で非推奨化されるオプションたち
uhyo
15
5.9k
Dify on AWS の選択肢
ysekiy
0
120
Featured
See All Featured
It's Worth the Effort
3n
187
29k
Writing Fast Ruby
sferik
630
62k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Designing for Performance
lara
610
69k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
The Language of Interfaces
destraynor
162
25k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
The Pragmatic Product Professional
lauravandoore
37
7k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Thoughts on Productivity
jonyablonski
73
4.9k
Into the Great Unknown - MozCon
thekraken
40
2.2k
RailsConf 2023
tenderlove
30
1.3k
Transcript
ࡾ༔հ / Pepabo R&D Institute, GMO Pepabo, Inc. 2019.05.24 ୈ45ճ
ใॲཧֶձ Πϯλʔωοτͱӡ༻ٕज़ݚڀձ Synapse: ར༻ऀͷจ຺ʹԠͯ͡ ܧଓతʹਪનख๏ͷબΛ ࠷దԽ͢ΔਪનγεςϜ
1. ͡Ίʹ 2. എܠ 3. ఏҊख๏ 4. ධՁ 5. ·ͱΊ
2 ࣍
1. ͡Ίʹ
• ECαΠτͰ૿େʹ͏ใաଟΛղܾ͢ΔͨΊΛࣗಈతʹఏ Ҋ͢ΔػೳʢਪનγεςϜʣ͕ಋೖ͞ΕΔɽ • ਪનख๏ਪનࠜڌͱͳΔใݯํࣜʹΑͬͯબఆ͢Δ͕ҟͳΔ • ར༻ऀͷཁٻΛຬͨ͢Λબఆ͢ΔՄೳੑͷߴ͍ਪનख๏Λબ͢Δ͜ͱ͕ ӡӦऀʹͱͬͯॏཁ 4 ݚڀͷత
• Which is the best ? • ༰ϕʔεܕਪન • ྨࣅը૾
• ྨࣅςΩετ • ڠௐܕਪન • ࣝϕʔεܕਪન • ϋΠϒϦουܕਪન • ฒྻܕɼྻܕ… 5 ਪનख๏ͷબ
• Which is the best • ༰ϕʔεܕਪન • ྨࣅը૾ •
ྨࣅςΩετ • ڠௐܕਪન • ࣝϕʔεܕਪન • ϋΠϒϦουܕਪન • ฒྻܕɼྻܕ… 6 ಛఆͷ݅Ͱͷਪનख๏ͷબ • In the case ? • ਫ਼ • ͷಛੑ • ༰ͷදݱྗ • ίʔϧυελʔτ • ۙࣅ • จ຺ • ར༻ऀͷঢ়گͱཁٻ
• Which is the best • ༰ϕʔεܕਪન • ྨࣅը૾ •
ྨࣅςΩετ • ڠௐܕਪન • ࣝϕʔεܕਪન • ϋΠϒϦουܕਪન • ฒྻܕɼྻܕ… 7 ECαΠτͷಛఆͷ݅Ͱͷਪનख๏ͷબ • In the case • ਫ਼ • ͷಛੑ • ༰ͷදݱྗ • ίʔϧυελʔτ • ۙࣅ • จ຺ • ར༻ऀͷঢ়گͱཁٻ • On a EC site ? • ܧଓతͳվળ • ػೳՃ • ར༻ऀ૿Ճ • அଓతͳվѱ • ෆ۩߹ • γεςϜෛՙ • ݱࡏͷ࠷ળखͷٻ
ਪનख๏ͷ༏ྼଟ͘ͷ݅ʢจ຺ʣʹΑͬͯࠨӈ͞ΕΔ 8 ݚڀͷഎܠͱఏҊͷࠎࢠ ࣄલʹఆΊͨจ຺͝ͱʹਪનख๏ͷબΛࣗಈత͔ͭܧଓతʹ࠷దԽ͢Δਪન γεςϜͷఏҊ ༗ޮͳਪનख๏Λػձଛࣦ͕ͳ͍Α͏ʹจ຺ʹԠ͍͚͍ͯͨ͡
3. എܠ
• ᶃ ਪનख๏ͷ༏ྼ͕จ຺ʹΑͬͯมԽ͢Δ • ᶄ ༏ྼͷมԽ͢Δ൚༻తͰ໌֬ͳج४͕ͳ͍ • ᶅ ༏ྼ͕ܧଓతʹมԽ͢Δ 10
ਪનख๏ͷબʹ·ͭΘΔ՝ ECαΠτͷӡӦऀར༻ऀͷཁٻΛຬͨ͢Մೳੑͷߴ͍ਪનख๏Λબ͍ͨ͠ ͕ɼҎԼͷ՝ͷͨΊಋೖઌ͝ͱͷධՁͱௐ͕ߦΘΕ͍ͯΔɽ
11 ՝ᶃ ਪનख๏ͷ༏ྼ͕จ຺ʹΑͬͯมԽ͢Δ • ਪનख๏ͷ༏ྼଟ͘ͷ݅ʢจ຺ʣʹΑͬͯࠨӈ͞ΕΔ • ਪનख๏ͷલఏํࣜʹىҼ͢Δ੍ • ਪનରͱͳΔͷಛੑ •
ԠදࣔॱংͳͲͷ࣮ཁҼ • ΫϦοΫߪೖͳͲͷධՁࢦඪ • ਪન݁ՌΛධՁ͢Δར༻ऀଆͷঢ়گ
12 ՝ᶃ ਪનख๏ͷ༏ྼ͕จ຺ʹΑͬͯมԽ͢Δ ਪનରͱͳΔͷಛੑɼධՁࢦඪʹΑΔ༏ྼࠩͷྫ
13 ՝ᶃ ਪનख๏ͷ༏ྼ͕จ຺ʹΑͬͯมԽ͢Δ ਪનख๏ͷ༏ྼଟ͘ͷ݅ʢจ຺ʣʹΑͬͯࠨӈ͞ΕΔ ݅ʢจ຺ʣΛఆΊͯɼจ຺͝ͱʹదͨ͠ਪનख๏Λ͍͚Δ͜ͱͰਪનγ εςϜશମͰར༻ऀͷཁٻΛຬͨ͢Λબఆ͢ΔՄೳੑΛߴΊ͍ͨ
14 ՝ᶄ ༏ྼͷมԽ͢Δ൚༻తͰ໌֬ͳج४͕ͳ͍ • ༏ྼࠩͷج४ʹ͍ͭͯͷҰൠతͳ͜Ε·ͰͷใࠂධՁߟ͕͋Δͷ ͷจ຺ґଘͷͨΊ൚༻తͰ໌֬ͳج४ଘࡏ͠ͳ͍ • Ұൠతͳߟʹج͖ͮͭͭɼ࣮ڥͰͷධՁʹΑ͍͚ͬͯͷج४ ΛٻΊΔඞཁ͕͋Δ
• ϋΠϒϦουܕਪન • ਪનख๏ΛΈ߹Θ֤ͤͯख๏ͷॴΛิ͏ • ߪങཤྺ͕ੵ͞ΕΔ·Ͱ༰ϕʔεΛॏࢹɼੵޙʹڠௐܕΛॏࢹ 15 ՝ᶄ ༏ྼͷมԽ͢Δ൚༻తͰ໌֬ͳج४͕ͳ͍ $53
)JTUPSZDPVOU -PX .JEEMF )JHI $POUFOUCBTF $PDPSBCPSBUFCBTF ڠௐܕਪન͕ߪങཤྺͷੵʹΑͬͯਫ਼্͕͠༰ϕʔεܕ ਪનͷਫ਼ͱٯస͢Δ͜ͱΛදݱͨࣜ͠ਤ ߪങཤྺͷੵ͕۩ମతʹԿ݅ʹୡͨ࣌͠ʹ༰ϕʔεܕਪનͱ Γସ͑Δ͖͔࣮ڥͰͷධՁ͕ඞཁ
16 ՝ᶅ ༏ྼ͕ܧଓతʹมԽ͢Δ ECαΠτɼ࣮ڥͰͷධՁʹΑͬͯಘΒΕͨ݅͝ͱͷޮՌࠩʹج͍ͮͨਪ નख๏ͷ͍͚ʹΑͬͯਪનγεςϜͷޮՌΛܧଓతʹ࠷େԽ͍ͨ͠ 1. จ຺ͷΓ͚ 2. ৽͍͠ਪનख๏ͷಋೖ 3.
ಋೖޙͷ࠶ܭଌɼޮՌఆɼޮՌతͳख๏ͷద༻ ͜ΕΒΛఆظత͔ͭ࠷ͰߦΘͳ͚Εӡ༻ڥͰػձଛࣦ͕ൃੜ͢Δ
3. ఏҊख๏
• ᶃ ਪનख๏ͷ༏ྼ͕จ຺ʹΑͬͯมԽ͢Δ • จ຺ΛఆΊͯɼఆΊͨจ຺͝ͱʹਪનख๏Λ͍͚Δ • ᶄ ༏ྼͷมԽ͢Δ൚༻తͰ໌֬ͳج४͕ͳ͍ • ఆΊͨจ຺͝ͱʹ࣮ڥͰͷධՁΛߦ͏
• ᶅ ༏ྼ͕ܧଓతʹมԽ͢Δ • จ຺ਪનख๏ͷಋೖޙʹ࣌ؒࠩͳ͘దԠ͢Δ 18 ՝ͷཧ
• ར༻ऀͷཁٻΛຬͨ͢Λબఆ͢ΔՄೳੑͷߴ͍ਪનख๏Λӡ༻ڥͰػձ ଛࣦ͕ൃੜ͠ͳ͍Α͏ࣗಈత͔ͭܧଓతʹར༻͍ͨ͠ 19 ఏҊख๏ 1. จ຺ͷఆٛͱಋೖ 2. ৽͍͠ਪનख๏ͷಋೖ 3.
ಋೖޙͷ࠶ܭଌɼޮՌఆɼޮՌతͳख๏ͷద༻ • ࣄલʹఆΊͨจ຺͝ͱʹਪનख๏ͷબΛࣗಈత͔ͭܧଓతʹ࠷దԽ͢Δਪન γεςϜΛఏҊ
20 ਪનख๏ͷಋೖ • ධՁରͷਪનख๏ΛਪનγεςϜ͕Ձʹѻ͑ΔΑ͏ڞ௨ͷΠϯλʔϑΣʔ εΛ࣋ͭϞδϡʔϧͱͯ͠ఆٛ • ਪનॲཧڞ௨͢ΔϑΟϧλʹΑͬͯߏ͞ΕΔ • Profileʢར༻ऀͷใΛऩूʣ •
AssociationʢϓϩϑΝΠϧͱ݅ͷඥ͚ʣ • Searchʢ݅ʹै͍ީิΛݕࡧɼฒସ͑ʣ • ϑΟϧλͷڞ௨ར༻ʹΑΓอकੑͷ্
• ਪન݁Ռʹର͢Δར༻ऀͷԠΛܭଌ͢ΔͨΊͷϩάઃܭ • ར༻ऀ͝ͱͷϦΫΤετΛه • ར༻ऀ͝ͱͷਪનϦΫΤετʹର͢Δਪન݁ՌΛه • ਪનϦΫΤετͷޙͷߦಈ͕ਪન݁Ռͷʹؔ͢Δߦಈ͔Λൺֱ 21 จ຺͝ͱͷܭଌͱධՁ
5JNF $POUFYU .FUIPE 6TFS 1BUI 1BSBNT 3FTQPOTF $IBJS JNBHF " SFDPNNFOE " TIPX $IBJS DG # SFDPNNFOE # TIPX ਪનͷडೖ
• ෳͷਪનख๏͔ΒಘΒΕΔޮՌΛ࠷େԽ͢Δ • ଟόϯσΟοτͱͯ͠ղऍ͠ɼෳͷਪનख๏ͷޮՌʢΫϦοΫߪ ೖʣΛ࠷େԽ͢ΔͨΊEpsilon-GreedyΞϧΰϦζϜΛ࠾༻ • A/Bςετʹ͓͚ΔධՁͷख๏ར༻࣌ͷػձଛࣦΛճආ͢ΔͨΊͷख๏ • ࠷ॳA/BςετͷΑ͏ʹಉසͰΓସ͑Δ͕ධՁͷੵʢใु:rewardʣ ʹ͍ར༻සʹॏΈ͚͕ͳ͞ΕΔ
22 จ຺͝ͱͷධՁ Џ ׆༻ ୳ࡧ &QTJMPO(SFFEZΞϧΰϦζϜ
23 ධՁ݁Ռͷө ਪનγεςϜɼଟόϯσΟοτͱͯ͠ѻͬͨจ຺͝ͱͷޮՌతͳਪનख ๏ͷબ݁ՌΛఆظతʹऔΓࠐΈɼEpsilon-GreedyΞϧΰϦζϜͷॏΈ͚ʹ ै͍׆༻ํΛมߋ͢Δ
Synapse 24 Context Routing Context Context Method Method Method Method
Matching Process 0.33 0.33 0.33 Search Result Bandit Activity log Rewards Algorithms Epsilon- Greedy Softmax Feedback
Synapse 25 Context Routing Context Context Method Method Method Method
Matching Process 0.1 0.8 0.1 Search Result Bandit Activity log Rewards Algorithms Epsilon- Greedy Softmax Feedback
4. ධՁ
• ECαΠτͰར༻தͷਪનख๏ͷΫϦοΫ࣮ʹΑΔఏҊख๏ͷޮՌ༧ଌ • ΫϦοΫ࣮ɿӾཡதͷʹର͢ΔਪનΛఏҊ͢Δػೳ • ਪનख๏ɿྨࣅը૾ɼྨࣅςΩετɼڠௐܕਪનʢϓϦϛςΟϒɼLLRʣɼ σϞάϥϑΟοΫ • ϞϯςΧϧϩ๏ʹΑΔྦྷੵใु༧ଌΛൺֱ •
ࣄલʹఆΊΔจ຺ͱͯ͠ӾཡதͷͷΧςΰϦΛ࠾༻ • ࠷దԽͷޮՌଌఆɿ࠷దԽʹΑΔྦྷੵใु༧ଌͷมԽΛൺֱ • จ຺ͷޮՌଌఆɿจ຺͝ͱͷ࠷దԽͷ༗ແͰྦྷੵใु༧ଌͷมԽΛൺֱ 27 จ຺Λߟྀͨ͠ਪનख๏ͷબͷ࠷దԽ
จ຺͝ͱͷਪનख๏ͷޮՌͷࠩ 28 • จ຺ɼར༻ऀ͕ͲͷΧ ςΰϦΛݟ͍ͯΔ͔ • ਪનख๏͔ΒͷఏҊʹର͢Δ ΫϦοΫΛൺֱ • ΧςΰϦ͝ͱʹਪનख๏ͷޮ
Ռͷ͕ࠩ͋Δ͜ͱ͕ݟͯऔΕ Δ ΧςΰϦར༻ऀͷจ຺ͷ͏ͪγεςϜ͕ ѲͰ͖ΔͷͰଞͷECαΠτͰల։͍͢͠ɽ
ྦྷੵใु༧ଌ 29 • ࠷దԽΛߦͳ͍ͬͯͳ͍ͷ(1. No optimization) ͱൺֱͯ͠ ࠷ద ԽΛ͓͜ͳͬͨͷʢ2. Overall
optimization, 3. Category-wise optimizationʣͷྦྷੵใु༧ଌ͕ ߴ͍ • ࠷ऴతͳྦྷੵใु༧ଌจ຺ߟྀ ͨ͠࠷దԽ(3. Category-wize optimization)͕࠷ߴ͍
ྦྷੵใु༧ଌʢ্ཱ͕ͪΓʣ 30 • ࠷ॳͷൺֱͷઌ಄1000ճͷΈΛൺ ֱͨ͠ͷ • จ຺ߟྀ(3. Category-wise optimization)ͷ߹ɼจ຺͝ͱʹ ֶश͕ߦΘΕΔ͜ͱ͔Β্ཱ͕ͪ
Γʹ͕͔͔࣌ؒͬͨ
ྦྷੵใु༧ଌʢ༏ྼࠩͷগͳ͍ͷʣ 31 • ࠷ॳͷൺֱͷΫϦοΫͷࠩΛҙ ਤతʹΊͨͷ • ࠷ॳͷ࣮ݧͱಉ͡ॱҐ͚ͮʹͳΔ ͕༏ྼࠩͷஅ·Ͱʹଟ͘ͷࢼߦ ճΛཁͨ͠
• ਪનख๏ͷ༏ྼΛॿ͢Δదͳ݅Λબఆͯ͠ɼ͜ΕʹԠͨ͡ਪનख๏ͷબ ͷ࠷దԽΛߦ͏͜ͱͰྦྷੵใुֹͷ্ʹͭͳ͕Δ • ຊݚڀڥͷมԽͷଟ͍ঢ়گΛҙਤ͍ͯ͠Δ͜ͱ͔Βɼগͳ͍ࢼߦճͰͷ ࠷దԽΛਤΕΔΑ͏ͳํࡦʹΑΔվળ͕ظͰ͖Δ • ࢼߦճͷ૿Ճʹ͍୳ࡧΛΊΔʢΞχʔϦϯάʣ • ଞͷόϯσΟοτΞϧΰϦζϜʢUCB,
softmax…) • จ຺͖όϯσΟοτ 32 ධՁ
5. ·ͱΊ
• ར༻ऀͷจ຺ʹԠͯ͡ਪનख๏ͷಘखෆಘख͕͋Δ͜ͱ͕Θ͔ͬͨ • ఏҊख๏ʹΑΓख๏ಋೖͱจ຺ʹԠͨ͡࠷దͳख๏બఆ͕༰қʹͳΓɼػձଛ ࣦͷͳ͍ਪનγεςϜΛޮతͳߏங͕Մೳͱͳͬͨ • ݱࡏɼจ຺ΛࣄલʹఆΊΔඞཁ͕͋ΔͨΊɼಘखෆಘख͕ੜ͡Δจ຺ʹ͍ͭͯ ௐࠪΛਐΊΔ • ಘखෆಘखΛิ͍߹͑ΔΑ͏ʹͳͬͨ͜ͱͰɼݶఆతͰ͋ͬͯޮՌͷߴ͍ਪ
નख๏ͷ༗༻ੑ͕૿͢͜ͱ͕ߟ͑ΒΕΔͨΊɼͦͷΑ͏ͳख๏ͷݕ౼ΛਐΊΔɽ 34 ·ͱΊ
None