Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Synapse: 利用者の文脈に応じて 継続的に推薦手法の選択を 最適化する推薦システム/io...
Search
monochromegane
May 24, 2019
Technology
0
870
Synapse: 利用者の文脈に応じて 継続的に推薦手法の選択を 最適化する推薦システム/iot45_synapse
第45回 情報処理学会 インターネットと運用技術研究会
https://www.ipsj.or.jp/kenkyukai/event/csec85iot45.html
monochromegane
May 24, 2019
Tweet
Share
More Decks by monochromegane
See All by monochromegane
Go言語での実装を通して学ぶLLMファインチューニングの仕組み / fukuokago22-llm-peft
monochromegane
0
93
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
140
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
2.4k
ベクトル検索システムの気持ち
monochromegane
36
11k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
210
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
280
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
1k
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
610
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
1k
Other Decks in Technology
See All in Technology
Kubernetes における cgroup v2 でのOut-Of-Memory 問題の解決
pfn
PRO
0
170
AIドリブンのソフトウェア開発 - うまいやり方とまずいやり方
okdt
PRO
9
720
絶対に失敗できないキャンペーンページの高速かつ安全な開発、WINTICKET × microCMS の開発事例
microcms
0
220
Backboneとしてのtimm2025
yu4u
5
1.7k
Claude Code x Androidアプリ 開発
kgmyshin
1
640
衝突して強くなる! BLUE GIANTと アジャイルチームの共通点とは ― いきいきと活気に満ちたグルーヴあるチームを作るコツ ― / BLUE GIANT and Agile Teams
naitosatoshi
0
190
生成AI時代に必要な価値ある意思決定を育てる「開発プロセス定義」を用いた中期戦略
kakehashi
PRO
1
100
第4回 関東Kaggler会 [Training LLMs with Limited VRAM]
tascj
12
2k
Gaze-LLE: Gaze Target Estimation via Large-Scale Learned Encoders
kzykmyzw
0
380
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
30k
人を動かすことについて考える
ichimichi
2
350
LLMエージェント時代に適応した開発フロー
hiragram
1
440
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Making Projects Easy
brettharned
117
6.3k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
ࡾ༔հ / Pepabo R&D Institute, GMO Pepabo, Inc. 2019.05.24 ୈ45ճ
ใॲཧֶձ Πϯλʔωοτͱӡ༻ٕज़ݚڀձ Synapse: ར༻ऀͷจ຺ʹԠͯ͡ ܧଓతʹਪનख๏ͷબΛ ࠷దԽ͢ΔਪનγεςϜ
1. ͡Ίʹ 2. എܠ 3. ఏҊख๏ 4. ධՁ 5. ·ͱΊ
2 ࣍
1. ͡Ίʹ
• ECαΠτͰ૿େʹ͏ใաଟΛղܾ͢ΔͨΊΛࣗಈతʹఏ Ҋ͢ΔػೳʢਪનγεςϜʣ͕ಋೖ͞ΕΔɽ • ਪનख๏ਪનࠜڌͱͳΔใݯํࣜʹΑͬͯબఆ͢Δ͕ҟͳΔ • ར༻ऀͷཁٻΛຬͨ͢Λબఆ͢ΔՄೳੑͷߴ͍ਪનख๏Λબ͢Δ͜ͱ͕ ӡӦऀʹͱͬͯॏཁ 4 ݚڀͷత
• Which is the best ? • ༰ϕʔεܕਪન • ྨࣅը૾
• ྨࣅςΩετ • ڠௐܕਪન • ࣝϕʔεܕਪન • ϋΠϒϦουܕਪન • ฒྻܕɼྻܕ… 5 ਪનख๏ͷબ
• Which is the best • ༰ϕʔεܕਪન • ྨࣅը૾ •
ྨࣅςΩετ • ڠௐܕਪન • ࣝϕʔεܕਪન • ϋΠϒϦουܕਪન • ฒྻܕɼྻܕ… 6 ಛఆͷ݅Ͱͷਪનख๏ͷબ • In the case ? • ਫ਼ • ͷಛੑ • ༰ͷදݱྗ • ίʔϧυελʔτ • ۙࣅ • จ຺ • ར༻ऀͷঢ়گͱཁٻ
• Which is the best • ༰ϕʔεܕਪન • ྨࣅը૾ •
ྨࣅςΩετ • ڠௐܕਪન • ࣝϕʔεܕਪન • ϋΠϒϦουܕਪન • ฒྻܕɼྻܕ… 7 ECαΠτͷಛఆͷ݅Ͱͷਪનख๏ͷબ • In the case • ਫ਼ • ͷಛੑ • ༰ͷදݱྗ • ίʔϧυελʔτ • ۙࣅ • จ຺ • ར༻ऀͷঢ়گͱཁٻ • On a EC site ? • ܧଓతͳվળ • ػೳՃ • ར༻ऀ૿Ճ • அଓతͳվѱ • ෆ۩߹ • γεςϜෛՙ • ݱࡏͷ࠷ળखͷٻ
ਪનख๏ͷ༏ྼଟ͘ͷ݅ʢจ຺ʣʹΑͬͯࠨӈ͞ΕΔ 8 ݚڀͷഎܠͱఏҊͷࠎࢠ ࣄલʹఆΊͨจ຺͝ͱʹਪનख๏ͷબΛࣗಈత͔ͭܧଓతʹ࠷దԽ͢Δਪન γεςϜͷఏҊ ༗ޮͳਪનख๏Λػձଛࣦ͕ͳ͍Α͏ʹจ຺ʹԠ͍͚͍ͯͨ͡
3. എܠ
• ᶃ ਪનख๏ͷ༏ྼ͕จ຺ʹΑͬͯมԽ͢Δ • ᶄ ༏ྼͷมԽ͢Δ൚༻తͰ໌֬ͳج४͕ͳ͍ • ᶅ ༏ྼ͕ܧଓతʹมԽ͢Δ 10
ਪનख๏ͷબʹ·ͭΘΔ՝ ECαΠτͷӡӦऀར༻ऀͷཁٻΛຬͨ͢Մೳੑͷߴ͍ਪનख๏Λબ͍ͨ͠ ͕ɼҎԼͷ՝ͷͨΊಋೖઌ͝ͱͷධՁͱௐ͕ߦΘΕ͍ͯΔɽ
11 ՝ᶃ ਪનख๏ͷ༏ྼ͕จ຺ʹΑͬͯมԽ͢Δ • ਪનख๏ͷ༏ྼଟ͘ͷ݅ʢจ຺ʣʹΑͬͯࠨӈ͞ΕΔ • ਪનख๏ͷલఏํࣜʹىҼ͢Δ੍ • ਪનରͱͳΔͷಛੑ •
ԠදࣔॱংͳͲͷ࣮ཁҼ • ΫϦοΫߪೖͳͲͷධՁࢦඪ • ਪન݁ՌΛධՁ͢Δར༻ऀଆͷঢ়گ
12 ՝ᶃ ਪનख๏ͷ༏ྼ͕จ຺ʹΑͬͯมԽ͢Δ ਪનରͱͳΔͷಛੑɼධՁࢦඪʹΑΔ༏ྼࠩͷྫ
13 ՝ᶃ ਪનख๏ͷ༏ྼ͕จ຺ʹΑͬͯมԽ͢Δ ਪનख๏ͷ༏ྼଟ͘ͷ݅ʢจ຺ʣʹΑͬͯࠨӈ͞ΕΔ ݅ʢจ຺ʣΛఆΊͯɼจ຺͝ͱʹదͨ͠ਪનख๏Λ͍͚Δ͜ͱͰਪનγ εςϜશମͰར༻ऀͷཁٻΛຬͨ͢Λબఆ͢ΔՄೳੑΛߴΊ͍ͨ
14 ՝ᶄ ༏ྼͷมԽ͢Δ൚༻తͰ໌֬ͳج४͕ͳ͍ • ༏ྼࠩͷج४ʹ͍ͭͯͷҰൠతͳ͜Ε·ͰͷใࠂධՁߟ͕͋Δͷ ͷจ຺ґଘͷͨΊ൚༻తͰ໌֬ͳج४ଘࡏ͠ͳ͍ • Ұൠతͳߟʹج͖ͮͭͭɼ࣮ڥͰͷධՁʹΑ͍͚ͬͯͷج४ ΛٻΊΔඞཁ͕͋Δ
• ϋΠϒϦουܕਪન • ਪનख๏ΛΈ߹Θ֤ͤͯख๏ͷॴΛิ͏ • ߪങཤྺ͕ੵ͞ΕΔ·Ͱ༰ϕʔεΛॏࢹɼੵޙʹڠௐܕΛॏࢹ 15 ՝ᶄ ༏ྼͷมԽ͢Δ൚༻తͰ໌֬ͳج४͕ͳ͍ $53
)JTUPSZDPVOU -PX .JEEMF )JHI $POUFOUCBTF $PDPSBCPSBUFCBTF ڠௐܕਪન͕ߪങཤྺͷੵʹΑͬͯਫ਼্͕͠༰ϕʔεܕ ਪનͷਫ਼ͱٯస͢Δ͜ͱΛදݱͨࣜ͠ਤ ߪങཤྺͷੵ͕۩ମతʹԿ݅ʹୡͨ࣌͠ʹ༰ϕʔεܕਪનͱ Γସ͑Δ͖͔࣮ڥͰͷධՁ͕ඞཁ
16 ՝ᶅ ༏ྼ͕ܧଓతʹมԽ͢Δ ECαΠτɼ࣮ڥͰͷධՁʹΑͬͯಘΒΕͨ݅͝ͱͷޮՌࠩʹج͍ͮͨਪ નख๏ͷ͍͚ʹΑͬͯਪનγεςϜͷޮՌΛܧଓతʹ࠷େԽ͍ͨ͠ 1. จ຺ͷΓ͚ 2. ৽͍͠ਪનख๏ͷಋೖ 3.
ಋೖޙͷ࠶ܭଌɼޮՌఆɼޮՌతͳख๏ͷద༻ ͜ΕΒΛఆظత͔ͭ࠷ͰߦΘͳ͚Εӡ༻ڥͰػձଛࣦ͕ൃੜ͢Δ
3. ఏҊख๏
• ᶃ ਪનख๏ͷ༏ྼ͕จ຺ʹΑͬͯมԽ͢Δ • จ຺ΛఆΊͯɼఆΊͨจ຺͝ͱʹਪનख๏Λ͍͚Δ • ᶄ ༏ྼͷมԽ͢Δ൚༻తͰ໌֬ͳج४͕ͳ͍ • ఆΊͨจ຺͝ͱʹ࣮ڥͰͷධՁΛߦ͏
• ᶅ ༏ྼ͕ܧଓతʹมԽ͢Δ • จ຺ਪનख๏ͷಋೖޙʹ࣌ؒࠩͳ͘దԠ͢Δ 18 ՝ͷཧ
• ར༻ऀͷཁٻΛຬͨ͢Λબఆ͢ΔՄೳੑͷߴ͍ਪનख๏Λӡ༻ڥͰػձ ଛࣦ͕ൃੜ͠ͳ͍Α͏ࣗಈత͔ͭܧଓతʹར༻͍ͨ͠ 19 ఏҊख๏ 1. จ຺ͷఆٛͱಋೖ 2. ৽͍͠ਪનख๏ͷಋೖ 3.
ಋೖޙͷ࠶ܭଌɼޮՌఆɼޮՌతͳख๏ͷద༻ • ࣄલʹఆΊͨจ຺͝ͱʹਪનख๏ͷબΛࣗಈత͔ͭܧଓతʹ࠷దԽ͢Δਪન γεςϜΛఏҊ
20 ਪનख๏ͷಋೖ • ධՁରͷਪનख๏ΛਪનγεςϜ͕Ձʹѻ͑ΔΑ͏ڞ௨ͷΠϯλʔϑΣʔ εΛ࣋ͭϞδϡʔϧͱͯ͠ఆٛ • ਪનॲཧڞ௨͢ΔϑΟϧλʹΑͬͯߏ͞ΕΔ • Profileʢར༻ऀͷใΛऩूʣ •
AssociationʢϓϩϑΝΠϧͱ݅ͷඥ͚ʣ • Searchʢ݅ʹै͍ީิΛݕࡧɼฒସ͑ʣ • ϑΟϧλͷڞ௨ར༻ʹΑΓอकੑͷ্
• ਪન݁Ռʹର͢Δར༻ऀͷԠΛܭଌ͢ΔͨΊͷϩάઃܭ • ར༻ऀ͝ͱͷϦΫΤετΛه • ར༻ऀ͝ͱͷਪનϦΫΤετʹର͢Δਪન݁ՌΛه • ਪનϦΫΤετͷޙͷߦಈ͕ਪન݁Ռͷʹؔ͢Δߦಈ͔Λൺֱ 21 จ຺͝ͱͷܭଌͱධՁ
5JNF $POUFYU .FUIPE 6TFS 1BUI 1BSBNT 3FTQPOTF $IBJS JNBHF " SFDPNNFOE " TIPX $IBJS DG # SFDPNNFOE # TIPX ਪનͷडೖ
• ෳͷਪનख๏͔ΒಘΒΕΔޮՌΛ࠷େԽ͢Δ • ଟόϯσΟοτͱͯ͠ղऍ͠ɼෳͷਪનख๏ͷޮՌʢΫϦοΫߪ ೖʣΛ࠷େԽ͢ΔͨΊEpsilon-GreedyΞϧΰϦζϜΛ࠾༻ • A/Bςετʹ͓͚ΔධՁͷख๏ར༻࣌ͷػձଛࣦΛճආ͢ΔͨΊͷख๏ • ࠷ॳA/BςετͷΑ͏ʹಉසͰΓସ͑Δ͕ධՁͷੵʢใु:rewardʣ ʹ͍ར༻සʹॏΈ͚͕ͳ͞ΕΔ
22 จ຺͝ͱͷධՁ Џ ׆༻ ୳ࡧ &QTJMPO(SFFEZΞϧΰϦζϜ
23 ධՁ݁Ռͷө ਪનγεςϜɼଟόϯσΟοτͱͯ͠ѻͬͨจ຺͝ͱͷޮՌతͳਪનख ๏ͷબ݁ՌΛఆظతʹऔΓࠐΈɼEpsilon-GreedyΞϧΰϦζϜͷॏΈ͚ʹ ै͍׆༻ํΛมߋ͢Δ
Synapse 24 Context Routing Context Context Method Method Method Method
Matching Process 0.33 0.33 0.33 Search Result Bandit Activity log Rewards Algorithms Epsilon- Greedy Softmax Feedback
Synapse 25 Context Routing Context Context Method Method Method Method
Matching Process 0.1 0.8 0.1 Search Result Bandit Activity log Rewards Algorithms Epsilon- Greedy Softmax Feedback
4. ධՁ
• ECαΠτͰར༻தͷਪનख๏ͷΫϦοΫ࣮ʹΑΔఏҊख๏ͷޮՌ༧ଌ • ΫϦοΫ࣮ɿӾཡதͷʹର͢ΔਪનΛఏҊ͢Δػೳ • ਪનख๏ɿྨࣅը૾ɼྨࣅςΩετɼڠௐܕਪનʢϓϦϛςΟϒɼLLRʣɼ σϞάϥϑΟοΫ • ϞϯςΧϧϩ๏ʹΑΔྦྷੵใु༧ଌΛൺֱ •
ࣄલʹఆΊΔจ຺ͱͯ͠ӾཡதͷͷΧςΰϦΛ࠾༻ • ࠷దԽͷޮՌଌఆɿ࠷దԽʹΑΔྦྷੵใु༧ଌͷมԽΛൺֱ • จ຺ͷޮՌଌఆɿจ຺͝ͱͷ࠷దԽͷ༗ແͰྦྷੵใु༧ଌͷมԽΛൺֱ 27 จ຺Λߟྀͨ͠ਪનख๏ͷબͷ࠷దԽ
จ຺͝ͱͷਪનख๏ͷޮՌͷࠩ 28 • จ຺ɼར༻ऀ͕ͲͷΧ ςΰϦΛݟ͍ͯΔ͔ • ਪનख๏͔ΒͷఏҊʹର͢Δ ΫϦοΫΛൺֱ • ΧςΰϦ͝ͱʹਪનख๏ͷޮ
Ռͷ͕ࠩ͋Δ͜ͱ͕ݟͯऔΕ Δ ΧςΰϦར༻ऀͷจ຺ͷ͏ͪγεςϜ͕ ѲͰ͖ΔͷͰଞͷECαΠτͰల։͍͢͠ɽ
ྦྷੵใु༧ଌ 29 • ࠷దԽΛߦͳ͍ͬͯͳ͍ͷ(1. No optimization) ͱൺֱͯ͠ ࠷ద ԽΛ͓͜ͳͬͨͷʢ2. Overall
optimization, 3. Category-wise optimizationʣͷྦྷੵใु༧ଌ͕ ߴ͍ • ࠷ऴతͳྦྷੵใु༧ଌจ຺ߟྀ ͨ͠࠷దԽ(3. Category-wize optimization)͕࠷ߴ͍
ྦྷੵใु༧ଌʢ্ཱ͕ͪΓʣ 30 • ࠷ॳͷൺֱͷઌ಄1000ճͷΈΛൺ ֱͨ͠ͷ • จ຺ߟྀ(3. Category-wise optimization)ͷ߹ɼจ຺͝ͱʹ ֶश͕ߦΘΕΔ͜ͱ͔Β্ཱ͕ͪ
Γʹ͕͔͔࣌ؒͬͨ
ྦྷੵใु༧ଌʢ༏ྼࠩͷগͳ͍ͷʣ 31 • ࠷ॳͷൺֱͷΫϦοΫͷࠩΛҙ ਤతʹΊͨͷ • ࠷ॳͷ࣮ݧͱಉ͡ॱҐ͚ͮʹͳΔ ͕༏ྼࠩͷஅ·Ͱʹଟ͘ͷࢼߦ ճΛཁͨ͠
• ਪનख๏ͷ༏ྼΛॿ͢Δదͳ݅Λબఆͯ͠ɼ͜ΕʹԠͨ͡ਪનख๏ͷબ ͷ࠷దԽΛߦ͏͜ͱͰྦྷੵใुֹͷ্ʹͭͳ͕Δ • ຊݚڀڥͷมԽͷଟ͍ঢ়گΛҙਤ͍ͯ͠Δ͜ͱ͔Βɼগͳ͍ࢼߦճͰͷ ࠷దԽΛਤΕΔΑ͏ͳํࡦʹΑΔվળ͕ظͰ͖Δ • ࢼߦճͷ૿Ճʹ͍୳ࡧΛΊΔʢΞχʔϦϯάʣ • ଞͷόϯσΟοτΞϧΰϦζϜʢUCB,
softmax…) • จ຺͖όϯσΟοτ 32 ධՁ
5. ·ͱΊ
• ར༻ऀͷจ຺ʹԠͯ͡ਪનख๏ͷಘखෆಘख͕͋Δ͜ͱ͕Θ͔ͬͨ • ఏҊख๏ʹΑΓख๏ಋೖͱจ຺ʹԠͨ͡࠷దͳख๏બఆ͕༰қʹͳΓɼػձଛ ࣦͷͳ͍ਪનγεςϜΛޮతͳߏங͕Մೳͱͳͬͨ • ݱࡏɼจ຺ΛࣄલʹఆΊΔඞཁ͕͋ΔͨΊɼಘखෆಘख͕ੜ͡Δจ຺ʹ͍ͭͯ ௐࠪΛਐΊΔ • ಘखෆಘखΛิ͍߹͑ΔΑ͏ʹͳͬͨ͜ͱͰɼݶఆతͰ͋ͬͯޮՌͷߴ͍ਪ
નख๏ͷ༗༻ੑ͕૿͢͜ͱ͕ߟ͑ΒΕΔͨΊɼͦͷΑ͏ͳख๏ͷݕ౼ΛਐΊΔɽ 34 ·ͱΊ
None