Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
なめらかなセキュリティを目指して/Toward The Coherently Fittable...
Search
monochromegane
September 19, 2019
Technology
0
640
なめらかなセキュリティを目指して/Toward The Coherently Fittable Security
2019.09.19 第47回 情報処理学会 インターネットと運用技術研究会
https://www.ipsj.or.jp/kenkyukai/event/iot47spt35.html
monochromegane
September 19, 2019
Tweet
Share
More Decks by monochromegane
See All by monochromegane
ベクトル検索システムの気持ち
monochromegane
33
11k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
180
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
250
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
910
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
550
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
960
Go言語でMac GPUプログラミング
monochromegane
1
620
Contextual and Nonstationary Multi-armed Bandits Using the Linear Gaussian State Space Model for the Meta-Recommender System
monochromegane
1
1.1k
迅速な学習機構を用いて逐次適応性を損なうことなく非線形性を扱う文脈付き多腕バンディット手法/extreme_neural_linear_bandits
monochromegane
0
2.2k
Other Decks in Technology
See All in Technology
Securing your Lambda 101
chillzprezi
0
300
キャディでのApache Iceberg, Trino採用事例 -Apache Iceberg and Trino Usecase in CADDi--
caddi_eng
0
160
ObsidianをMCP連携させてみる
ttnyt8701
2
130
Model Mondays S2E01: Advanced Reasoning
nitya
0
420
VISITS_AIIoTビジネス共創ラボ登壇資料.pdf
iotcomjpadmin
0
120
Azure AI Foundryでマルチエージェントワークフロー
seosoft
0
120
Amazon Q Developer for GitHubとAmplify Hosting でサクッとデジタル名刺を作ってみた
kmiya84377
0
3.5k
Nonaka Sensei
kawaguti
PRO
4
770
OCI Oracle Database Services新機能アップデート(2025/03-2025/05)
oracle4engineer
PRO
1
190
実践! AIエージェント導入記
1mono2prod
0
110
CI/CDとタスク共有で加速するVibe Coding
tnbe21
0
210
新規プロダクト開発、AIでどう変わった? #デザインエンジニアMeetup
bengo4com
0
490
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Optimizing for Happiness
mojombo
379
70k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Site-Speed That Sticks
csswizardry
10
640
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
4 Signs Your Business is Dying
shpigford
184
22k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
The Cult of Friendly URLs
andyhume
79
6.4k
Transcript
Toward The Coherently Fittable Security ࡾ ༔հ(GMOϖύϘגࣜձࣾ ϖύϘݚڀॴ), Ѩ෦ ത(ίίϯגࣜձࣾ
ٕज़ݚڀࣨ), ܀ྛ ݈ଠ(ϖύϘݚڀॴ) 2019.09.19 ୈ47ճ ใॲཧֶձ Πϯλʔωοτͱӡ༻ٕज़ݚڀձ ͳΊΒ͔ͳηΩϡϦςΟΛࢦͯ͠
1. എܠ 2. ͳΊΒ͔ͳηΩϡϦςΟ 3. ͳΊΒ͔ͳηΩϡϦςΟͷ࣮ݱʹ͚ͨ෦ݚڀ 4. ߟͱ·ͱΊ 2 ࣍
1. എܠ
ηΩϡϦςΟରࡦͷӡ༻ͱ՝
• ར༻ऀʹͱͬͯɼηΩϡϦςΟࢪࡦಋೖʹΑΔ໘͕૿͑རศੑ͕ଛͳΘΕΔ • ଟཁૉೝূͷಋೖΞΫηε੍ݶʢతͳ੍ʣ • IDS/IPSʹΑΔޡݕग़ͷରԠʢؒతͳӨڹʣ 5 ηΩϡϦςΟରࡦͷӡ༻ͱ՝ᶃ: རศੑͷԼ
• ৽ͨͳڴҖʹରͯ͠ɼ৽͍͠ࢪࡦΛಋೖ͢ΔɼϧʔϧΛݟ͠ݫ͘͢͠ΔͳͲɼ ࡍݶͳ͘ྔΛཁٻ͢Δ • ҰڧԽͨ͠ηΩϡϦςΟରࡦɼηΩϡϦςΟ্ͷڴҖ͕ऑ·ͬͨͱͯ͠ ܧଓ͞Εෆཁͳίετͷ૿Ճʹܨ͕Δʹ͋Δɽ 6 ηΩϡϦςΟରࡦͷӡ༻ͱ՝ᶄ: ίετͷ૿Ճ
• རศੑɾίετͱηΩϡϦςΟτϨʔυΦϑ • ঢ়گݸʑਓʹΑͬͯඞཁͳηΩϡϦςΟରࡦҟͳΔ • ৴པͰ͖Δؔऀʹର͢ΔηΩϡϦςΟରࡦͷ෦తͳ؇ • ݸผ͔ͭৄࡉͳݖݶཧӡ༻ෛՙ͕ߴ͍ • WebαʔϏεͷΑ͏ͳෆಛఆଟͷར༻ऀΛલఏͱ͢ΔใγεςϜͰ
Ұͷݖݶཧ 7 ηΩϡϦςΟରࡦͷӡ༻ͱ՝: ᶃᶄͷΞϓϩʔν ॊೈͳηΩϡϦςΟରࡦΛӡ༻ෛՙΛ૿େ͢Δ͜ͱͳ͘ߦ͍͍ͨ
• ใγεςϜͷ։ൃӡ༻ऀʹͱͬͯɼཧ͖͢ϧʔϧࢹ͖͢ϩάɼ ηΩϡϦςΟΠϯγσϯτͷରԠͳͲηΩϡϦςΟΛڧԽ͢ΔҝʹΔ͖ ͜ͱ͕૿Ճɽ • ֤ηΩϡϦςΟରࡦͷ࿈ܞ • ֤ηΩϡϦςΟରࡦΛԣஅͨ͠ϩάͷੳ • ֤ηΩϡϦςΟରࡦͷ࠷৽Խ
8 ηΩϡϦςΟରࡦͷӡ༻ͱ՝ᶅ: ӡ༻ෛՙͷ૿େ
• ࿈ܞԣஅͷ՝౷߹ཧʹΑΔলྗԽ • ෳͷηΩϡϦςΟରࡦΛ౷߹͢ΔUTM • ֤छϩάͷҰݩཧɾੳΛߦ͏SIEM • ࠷৽Խͷ՝ύονγάωνϟͷࣗಈߋ৽ʹΑ࣮ͬͯݱ • ҰํͰɼFirewallͷϙϦγʔWAFͷύλʔϯͱ͍ͬͨಋೖઌͷڥ
WebαʔϏεͷಛੑʹґଘ͢Δͷมߋʹै͢ΔΈ͕ඞཁ 9 ηΩϡϦςΟରࡦͷӡ༻ͱ՝: ᶅͷΞϓϩʔν ޮతͳηΩϡϦςΟରࡦͷͨΊҡ࣋ཧΛࣗಈԽ͍ͨ͠
ݚڀͷత
• ใηΩϡϦςΟʹؔ͢ΔΠϯγσϯτͷൃੜසࣾձతӨڹʑ֦େ • ଟ༷Խ͢ΔαΠόʔ߈ܸʹରԠ͢ΔͨΊɼଟޚ͕ओྲྀͱͳΔ • ڧݻͳηΩϡϦςΟͱͷτϨʔυΦϑͰ͋ΔརศੑͷԼɾίετӡ༻ෛՙ ͷ૿େΛղফ͠ɼܧଓՄೳͳηΩϡϦςΟରࡦͷΈΛ࡞Δ͜ͱ͕ใγε ςϜͷ։ൃӡ༻ऀʹͱͬͯॏཁ 11 ݚڀͷత
͜ΕΒΛ࣮ݱ͢ΔͨΊͷΈΛʮͳΊΒ͔ͳηΩϡϦςΟʯͱͯ͠ఏҊ 12 ఏҊͷࠎࢠ ᶃ ඞཁͳ࣌ʹඞཁ࠷খݶͷηΩϡϦςΟΛఏڙ → ঢ়گݸʑਓʹ࠷దԽ͢Δ͜ͱͰརศੑͷҡ࣋ɾෆཁͳίετൃੜͷճආ ᶄ ࠷దͳαʔϏεΛࣗಈతʹఏڙ →
ঢ়گݸʑਓͷѲ࠷దԽ͕ࣗಈతʹߦΘΕΔ͜ͱͰӡ༻ෛՙΛݮ
ͳΊΒ͔ͳγεςϜ
• ใγεςϜͷ͜ͱΛ͍͏ͷΈͳΒͣɼޓ͍ʹӨڹΛٴ΅͠߹͏ܧଓతͳؔ ʹ͋Δར༻ऀʢϢʔβ͓Αͼ։ൃӡ༻ऀʣͱใγεςϜͱ͔ΒͳΔ૯ମͱ͠ ͯͷγεςϜ 14 ͳΊΒ͔ͳγεςϜ ग़ॴ܀ྛ݈ଠ ࡾ༔հ দຊ྄հ ͳΊΒ͔ͳγεςϜΛࢦͯ͠
ϚϧνϝσΟΞɺࢄɺڠௐͱϞόΠϧʢ%*$0.0ʣγϯϙδϜ # +VM
• ཁ݅ʢ1ʣɿར༻ऀͱใγεςϜͱ͕ܧଓతͳؔΛऔΓ࣋ͭաఔʹ͓͍ ͯɼར༻ऀͦΕͧΕʹݻ༗ͷίϯςΩετΛݟग़ͨ͠Γɼ৽ͨͳίϯςΩετ Λग़ͨ͠ΓͰ͖Δ͜ͱ • ཁ݅ʢ2ʣɿཁ݅ʢ1ʣΛɼར༻ऀʹΑΔ໌ࣔతͳૢ࡞Λ՝͢͜ͱͳ࣮͘ݱͰ ͖Δ͜ͱ • ཁ݅ʢ3ʣɿཁ݅ʢ1ʣ͓Αͼʢ2ʣʹΑͬͯಘΒΕͨίϯςΩετʹجͮ ͖ɼใγεςϜ͕ར༻ऀʹରͯ͠࠷దͳαʔϏεΛࣗಈతʹఏڙͰ͖Δ͜ͱ
15 ͳΊΒ͔ͳγεςϜ ग़ॴ܀ྛ݈ଠ ࡾ༔հ দຊ྄հ ͳΊΒ͔ͳγεςϜΛࢦͯ͠ ϚϧνϝσΟΞɺࢄɺڠௐͱϞόΠϧʢ%*$0.0ʣγϯϙδϜ # +VM
2. ͳΊΒ͔ͳηΩϡϦςΟ
• ڧݻͳηΩϡϦςΟΛ࣮ݱ͢ΔηΩϡϦςΟରࡦͷͨΊʹɼརศੑίετ ͷ໘Ͱͷॊೈੑͱɼӡ༻ͷ໘Ͱͷޮతͳҡ࣋ཧΛཱ͕྆ඞཁ • ʮͳΊΒ͔ͳγεςϜʯͷཁ݅Λຬͨ͢͜ͱͰ͜ΕΛղܾ͢Δ 17 ͳΊΒ͔ͳγεςϜʹΑΔηΩϡϦςΟͷ࣮ݱ ᶃ ݸʑਓʹ߹Θͤͨඞཁ࠷খݶͷηΩϡϦςΟରࡦʹΑͬͯॊೈੑΛ֬อ →
ͳΊΒ͔ͳγεςϜʹ͓͚Δཁ݅ʢ3ʣ ᶄ ར༻ऀͱηΩϡϦςΟγεςϜͷؔੑΛࣗಈ͔ͭܧଓతʹݕग़ɽݸผԽΛ ؚΉηΩϡϦςΟରࡦΛޮతʹҡ࣋ཧ → ͳΊΒ͔ͳγεςϜʹ͓͚Δཁ݅ʢ1ʣͱʢ2ʣ
18 ͳΊΒ͔ͳηΩϡϦςΟ ग़ॴʮϖύϘݚڀॴʯºʮίίϯٕज़ݚڀࣨʯʮͳΊΒ͔ͳηΩϡϦςΟʯͷ࣮ݱʹ͚ͨڞಉݚڀՌͱͯ͠จ͓ΑͼΦʔϓϯιʔειϑτΣΞΛൃද γεςϜͷར༻ӡ༻ʹ͓͚Δ͞·͟·ͳোนʢΰπΰ πʣΛऔΓআ͖ɺݸʑਓʹ߹ΘͤͨʢύʔιφϥΠζ͠ ͨʣηΩϡϦςΟΛඞཁͳ࣌ʹඞཁ࠷খݶͷػೳͱͯ͠ ఏڙ͢Δ͜ͱͰɺརศੑΛଛͳΘͣɺ͔ͭϓϥΠόγʔ ใकΓͳ͕ΒηΩϡϦςΟΛ࣮ݱ͢ΔΈɻ l z
19
• ใγεςϜͷڥքɼ͢ͳΘͪϢʔβ͘͠։ൃӡ༻ऀͱίΞαʔϏεͷத ؒʹҐஔ͢Δ • ར༻ऀଆͷEdgeͰཁٻʹର͢ΔηΩϡϦςΟݕূΛߦ͏ • ཁٻʹର͢ΔηΩϡϦςΟཁ݅ͷબݸਓ·ͨݸʑʹ࠷దԽ • ։ൃऀଆͷEdgeͰίΞαʔϏεʹର͢ΔηΩϡϦςΟཁ݅Λड͚͚ɼ۩ ମɾݸผͷϧʔϧͷࣗಈੜৼΓ͚Λߦ͏ɽ
• ηΩϡϦςΟΦʔέετϨʔλͱͷ࿈ܞ 20 Edge
21 ηΩϡϦςΟΦʔέετϨʔλ ϩάऩूɾݕࡧ จ຺ղੳ ϧʔϧద༻ ηΩϡϦςΟΦʔέετϨʔλ ใγεςϜͱϢʔβͱͷΓͱΓʹؔ͢ΔେͳϩάΛऩ ू͠ɺඞཁʹԠͯ͡ݕࡧͰ͖ΔػೳΛఏڙ ཁٻΛ࣌ܥྻʹଊ͑Δ͜ͱͰจ຺ΛѲ͠ɺͦͷ༰ม Խʹରͯ͠దͳϥϕϦϯάͱܖػΛ༩͑Δ
จ຺ղੳ͔ΒಘΒΕͨϥϕϦϯάܖػʹج͍ͮͯɺ࠷ద͔ ͭඞཁ࠷খݶͷηΩϡϦςΟΛఏڙ͢ΔαʔϏεΛߏ ཁٻจ຺ʹରͯ͠ɺͦͷ࣌ʑʹඞཁ࠷খݶͷηΩϡϦςΟ ͷఏڙΛҡ࣋͢ΔΈɻԼهͷίϯϙωϯτ͔ΒͳΔɻ
3. ͳΊΒ͔ͳηΩϡϦςΟͷ ࣮ݱʹ͚ͨ෦ݚڀ
SQLΫΤϦͷϗϫΠτϦετࣗಈ࡞
• ͳΊΒ͔ͳηΩϡϦςΟʹݶΒͣɼҰൠతͳηΩϡϦςΟରࡦͰɼอޢର ͷใγεςϜʹैͯ͠ɼηΩϡϦςΟཁ݅Λߋ৽͢Δඞཁ͕͋Δɽ • ఏҊγεςϜͰɼݸʑਓʹ߹ΘͤͨηΩϡϦςΟΛඞཁͳ࣌ʹඞཁ࠷খݶͷ ػೳͱͯ͠ఏڙ͢ΔͨΊʹηΩϡϦςΟཁ݅ଟ༷Խ͢Δɽ • ͜ΕΒΛӡ༻ෛՙΛߴΊͣʹղܾ͢ΔʹɼηΩϡϦςΟཁ݅ͷߋ৽ΛਓखΛ հͣ͞ʹߦ͑ΔΈ͕ඞཁͱͳΔɽ 24
ӡ༻໘Ͱͷޮతͳҡ࣋ཧ
SQLΫΤϦͷϗϫΠτϦετࣗಈ࡞ 25 ଜ໋ Ѩ෦ത ੁ ྗ݈࣍ দຊ྄հ 8FCΞϓϦέʔγϣϯςετΛ༻͍ͨ42-ΫΤϦͷϗϫΠτϦετࣗಈ࡞ख๏ Πϯλʔωοτͱӡ༻ٕज़γϯϙδϜจू WPMVNF
QBHFTr OPW • WebΞϓϦέʔγϣϯͷࣗಈςετ࣌ʹൃߦ͞ ΕΔΫΤϦΛߏԽ͠ɼσʔλϕʔεFirewallͷ ϗϫΠτϦετͱͯ͠ར༻ • ఏҊγεςϜͰɼ։ൃӡ༻ऀଆͷEdgeʹର͠ ͯWebΞϓϦέʔγϣϯͷࣗಈςετ͕ొ͞ Εɼੜ͞ΕͨϗϫΠτϦετΛηΩϡϦςΟ ཁ݅ͱͯ͠ߋ৽
ଟ༷Խ͢ΔηΩϡϦςΟཁ݅ͷࣗಈੜ 26 ҰൠϢʔβ 6TFS"ཁٻ༻ͷ*' 6TFS#ཁٻ༻ͷ*' 0QT"ͷηΩϡϦςΟཁٻ 0QT" ϢʔβγεςϜ܈ ӡ༻։ൃऀγεςϜ ใγεςϜ
ݸผͷཁٻ ʢจ຺ʣ ηΩϡϦςΟ ΦʔέετϨʔλ ಛݖϢʔβ ΞϓϦέʔγϣϯͷࣗಈςετ͔ΒηΩϡϦςΟཁٻΛࣗಈ ੜ<> ࠓޙɺϢʔβཁٻͷจ຺ʹԠͯ͡ɺͷηΩϡϦςΟཁٻΛ ద༻͠Θ͚Δʢ͋Δ42-จΛಛݖϢʔβʹڐՄ͢Δʣऔ ΓΈΛߦ͏ ଜ໋ Ѩ෦ത ੁ ྗ݈࣍ দຊ྄հ 8FCΞϓϦέʔγϣϯςετΛ༻͍ͨ42-ΫΤϦͷϗϫΠτϦετࣗಈ࡞ख๏ Πϯλʔωοτͱӡ༻ٕज़γϯϙδϜจू WPMVNF QBHFTr OPW
Hayabusa
28 طଘݚڀ: Hayabusa Ѩ෦ത ౡܚҰ ٶຊେี ؔ୩༐࢘ ੴݪ༸ Ԭా தଜྒྷ
দӜ࢙ ࣰాཅҰ ࣌ؒ࣠ݕࡧʹ࠷దԽͨ͠εέʔϧΞτՄೳͳߴϩάݕࡧΤϯδϯͷ࣮ݱͱධՁ ใॲཧֶձจࢽ ר߸ QBHFT NBS • ͳΊΒ͔ͳηΩϡϦςΟʹݶΒͣɼҰൠతͳηΩϡϦςΟରࡦͰɼϩάΛҰ ՕॴʹूΊɼूதॲཧΛߦ͏߹͕ଟ͍ • େྔͷϩάΛऩू͔ͭ͠ॲཧ͢ΔͨΊͷࣄલݚڀͱͯ͠ɼHayabusaΛ։ൃ • ධՁ࣮ݧͰɼ144ԯߦͷsyslogσʔλͷશจݕࡧ͕7ඵͰྃ
• ϚΠΫϩηΩϡϦςΟαʔϏε͕࣮ߦ͞ΕΔEdgeࣗମʹେྔͷϩά͕ੵ͞ ΕΔɼ͔ͭEdgeͷେʢ1ສʙʣ • ϩάΛूதతʹॲཧͤ͞ΔʹɺϩάͷసૹԆଳҬͷѹഭ͕ݒ೦͞ΕΔ • EdgeͰͷࢄॲཧ • EdgeͷதͰࣗతʹॲཧΛ݁ͤ͞Δ •
EdgeͷதͰඞཁͳσʔλͷΈूܭͯ͠ɺΦʔέετϨʔλʹୡ 29 EdgeΛఆͨ͠ϩάॲཧ
Scalable Edge Log Processing 30 • ϩάॲཧΛEdgeدͤΔ • EdgeͰͷϩάੵ •
EdgeͰͷϩάॲཧͷ݁ʢࣗݾ݁ or ݁ ՌͷΈ֎෦సૹʣ • αʔϏεσΟεΧόϦʔͷԠ༻ • EdgeͰಈ͘ϚΠΫϩαʔϏεͷϩάΛऩ ूɾॲཧ • ͦͷͨΊͷϚΠΫϩαʔϏεͷ࠷దԽϧʔ ςΟϯά
Kaburaya
• Edge͕ಁաతʹৼΔ͏ͨΊʹύϑΥʔϚϯε͕ॏཁ • ҰํͰɼݸਓԽʹΑͬͯEdge͕૿Ճ͢ΔͨΊɼࢿݯࡃͷ࠷దԽ͕ٻΊΒ ΕΔɽ • ಉ༷ʹɼݸਓԽʹ͍֤Edgeͷଟ༷ੑ͕૿ͨ͢ΊɼखಈͰͷνϡʔχϯά ࠔͱͳΔɽ 32 Edgeʹ͓͚ΔࢿݯεέδϡʔϦϯάͷඞཁੑ
33 Edgeʹ͓͚ΔࢿݯεέδϡʔϦϯάͷඞཁੑ &EHF ϚΠΫϩηΩϡϦςΟαʔϏε࣮ߦͷฒྻԽ ֤ϚΠΫϩηΩϡϦςΟαʔϏεͷ࣮ߦج൫ͷΦʔτεέʔϦϯά • ύϑΥʔϚϯε্ʹϚΠΫϩηΩϡϦςΟαʔ Ϗε࣮ߦͷฒྻԽ࣮ߦج൫ͷεέʔϦϯά͕༗ޮ • ͜ΕΒΛෛՙࢿݯ੍Λߟྀͯ͠࠷దԽ͍ͨ͠
QSPDFTTͰෳϚΠΫϩηΩϡϦςΟαʔ Ϗε͕࣮ߦ͞ΕΔ߹ͳͲ ֤ϚΠΫϩηΩϡϦςΟαʔϏε͕ίϯς φͰఏڙ͞ΕΔ߹ͳͲ ⁞ ⁞
• ϑΟʔυόοΫ੍ޚΛ༻͍ͯɼରͷλεΫͷಛੑΛࣄલʹΔ͜ͱͳ͘ɼ Ԡత͔ͭܧଓతʹ࠷దͳฒߦΛٻΊΔ • ఏҊγεςϜͰɼݸผԽ͞ΕͨηΩϡϦςΟݕূ༰ͱॲཧ࣌ؒΛࣄલ ʹΔ͜ͱͳ͘ɼ࠷దͳΈ߹ΘͤΛ࣮ߦ࣌ʹࣗಈͰಋ͘ Kaburaya 34 :VTVLF.JZBLF 0QUJNJ[BUJPOGPS/VNCFSPGHPSPVUJOFT6TJOH'FFECBDL$POUSPM
(PQIFS$PO.BSSJPUU.BSRVJT4BO%JFHP.BSJOB $BMJGPSOJB +VMZ
4. ߟͱ·ͱΊ
• ͳΊΒ͔ͳγεςϜͷཁ݅ʹج͖ͮηΩϡϦςΟରࡦͷݸਓͷ࠷దԽΛࣗಈ͔ ͭܧଓతʹߦ͏ηΩϡϦςΟγεςϜΛఏҊ • EdgeͰͷϩάऩूɾݕࡧͷ؍͔ΒHayabusaͷ֦ு • ޮతͳҡ࣋ཧʹඞཁͳηΩϡϦςΟఆٛͷࣗಈੜ • ݸผԽ͞Εͨଟ༷ͳڥʹ͓͚ΔΦʔτεέʔϦϯάͷ࠷దԽ •
ࠓޙίϯςΩετղੳͱηΩϡϦςΟରࡦͷϚονϯάͷ࣮ݱͱEdgeͷཧత ͳஔܦ࿏બʹؔ͢Δݕ౼ΛਐΊΔ • ෳͷใγεςϜΛԣஅ͢ΔڥΛલఏͱͨ͠EdgeͷઃܭΛ௨࣮ͯ͠༻ੑͷ ߴ͍γεςϜΛ࣮ݱ͢Δ 36 ߟͱ·ͱΊ
None