Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
なめらかなセキュリティを目指して/Toward The Coherently Fittable...
Search
monochromegane
September 19, 2019
Technology
0
610
なめらかなセキュリティを目指して/Toward The Coherently Fittable Security
2019.09.19 第47回 情報処理学会 インターネットと運用技術研究会
https://www.ipsj.or.jp/kenkyukai/event/iot47spt35.html
monochromegane
September 19, 2019
Tweet
Share
More Decks by monochromegane
See All by monochromegane
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
190
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
710
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
420
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
770
Go言語でMac GPUプログラミング
monochromegane
1
490
Contextual and Nonstationary Multi-armed Bandits Using the Linear Gaussian State Space Model for the Meta-Recommender System
monochromegane
1
940
迅速な学習機構を用いて逐次適応性を損なうことなく非線形性を扱う文脈付き多腕バンディット手法/extreme_neural_linear_bandits
monochromegane
0
2.1k
再帰化への認知的転回/the-turn-to-recursive-system
monochromegane
0
760
仮想的な探索を用いて文脈や時間の経過による番狂わせにも迅速に追従する多腕バンディット手法/wi2_lkf_bandits
monochromegane
0
690
Other Decks in Technology
See All in Technology
Active Directory の保護
eurekaberry
6
3.6k
20250130_『SUUMO』の裏側!第2弾 ~機械学習エンジニアリング編
recruitengineers
PRO
1
520
MC906491 を見据えた Microsoft Entra Connect アップグレード対応
tamaiyutaro
1
120
クラウドネイティブ時代を乗り越えるためのオブザーバビリティ(可観測性)ことはじめ_CloudNative-Observability
tkhresk
0
110
プロダクト観点で考えるデータ基盤の育成戦略 / Growth Strategy of Data Analytics Platforms from a Product Perspective
yamamotoyuta
0
420
Amazon Location Serviceを使ってラーメンマップを作る
ryder472
2
220
生成AIの利活用を加速させるための取り組み「prAIrie-dog」/ Shibuya_AI_1
visional_engineering_and_design
1
120
[JAWS-UG栃木]地方だからできたクラウドネイティブ事例大公開! / jawsug_tochigi_tachibana
biatunky
0
210
EDRからERM: PFN-SIRTが関わるセキュリティとリスクへの取り組み
pfn
PRO
0
140
開発者が自律的に AWS Security Hub findings に 対応する仕組みと AWS re:Invent 2024 登壇体験談 / Developers autonomously report AWS Security Hub findings Corresponding mechanism and AWS re:Invent 2024 presentation experience
kaminashi
0
130
事業継続を支える自動テストの考え方
tsuemura
0
200
バクラクの組織とアーキテクチャ(要約)2025/01版
shkomine
13
3.3k
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
390
Music & Morning Musume
bryan
46
6.3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Optimizing for Happiness
mojombo
376
70k
How GitHub (no longer) Works
holman
313
140k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
39
1.9k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Mobile First: as difficult as doing things right
swwweet
223
9.3k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
230
Transcript
Toward The Coherently Fittable Security ࡾ ༔հ(GMOϖύϘגࣜձࣾ ϖύϘݚڀॴ), Ѩ෦ ത(ίίϯגࣜձࣾ
ٕज़ݚڀࣨ), ܀ྛ ݈ଠ(ϖύϘݚڀॴ) 2019.09.19 ୈ47ճ ใॲཧֶձ Πϯλʔωοτͱӡ༻ٕज़ݚڀձ ͳΊΒ͔ͳηΩϡϦςΟΛࢦͯ͠
1. എܠ 2. ͳΊΒ͔ͳηΩϡϦςΟ 3. ͳΊΒ͔ͳηΩϡϦςΟͷ࣮ݱʹ͚ͨ෦ݚڀ 4. ߟͱ·ͱΊ 2 ࣍
1. എܠ
ηΩϡϦςΟରࡦͷӡ༻ͱ՝
• ར༻ऀʹͱͬͯɼηΩϡϦςΟࢪࡦಋೖʹΑΔ໘͕૿͑རศੑ͕ଛͳΘΕΔ • ଟཁૉೝূͷಋೖΞΫηε੍ݶʢతͳ੍ʣ • IDS/IPSʹΑΔޡݕग़ͷରԠʢؒతͳӨڹʣ 5 ηΩϡϦςΟରࡦͷӡ༻ͱ՝ᶃ: རศੑͷԼ
• ৽ͨͳڴҖʹରͯ͠ɼ৽͍͠ࢪࡦΛಋೖ͢ΔɼϧʔϧΛݟ͠ݫ͘͢͠ΔͳͲɼ ࡍݶͳ͘ྔΛཁٻ͢Δ • ҰڧԽͨ͠ηΩϡϦςΟରࡦɼηΩϡϦςΟ্ͷڴҖ͕ऑ·ͬͨͱͯ͠ ܧଓ͞Εෆཁͳίετͷ૿Ճʹܨ͕Δʹ͋Δɽ 6 ηΩϡϦςΟରࡦͷӡ༻ͱ՝ᶄ: ίετͷ૿Ճ
• རศੑɾίετͱηΩϡϦςΟτϨʔυΦϑ • ঢ়گݸʑਓʹΑͬͯඞཁͳηΩϡϦςΟରࡦҟͳΔ • ৴པͰ͖Δؔऀʹର͢ΔηΩϡϦςΟରࡦͷ෦తͳ؇ • ݸผ͔ͭৄࡉͳݖݶཧӡ༻ෛՙ͕ߴ͍ • WebαʔϏεͷΑ͏ͳෆಛఆଟͷར༻ऀΛલఏͱ͢ΔใγεςϜͰ
Ұͷݖݶཧ 7 ηΩϡϦςΟରࡦͷӡ༻ͱ՝: ᶃᶄͷΞϓϩʔν ॊೈͳηΩϡϦςΟରࡦΛӡ༻ෛՙΛ૿େ͢Δ͜ͱͳ͘ߦ͍͍ͨ
• ใγεςϜͷ։ൃӡ༻ऀʹͱͬͯɼཧ͖͢ϧʔϧࢹ͖͢ϩάɼ ηΩϡϦςΟΠϯγσϯτͷରԠͳͲηΩϡϦςΟΛڧԽ͢ΔҝʹΔ͖ ͜ͱ͕૿Ճɽ • ֤ηΩϡϦςΟରࡦͷ࿈ܞ • ֤ηΩϡϦςΟରࡦΛԣஅͨ͠ϩάͷੳ • ֤ηΩϡϦςΟରࡦͷ࠷৽Խ
8 ηΩϡϦςΟରࡦͷӡ༻ͱ՝ᶅ: ӡ༻ෛՙͷ૿େ
• ࿈ܞԣஅͷ՝౷߹ཧʹΑΔলྗԽ • ෳͷηΩϡϦςΟରࡦΛ౷߹͢ΔUTM • ֤छϩάͷҰݩཧɾੳΛߦ͏SIEM • ࠷৽Խͷ՝ύονγάωνϟͷࣗಈߋ৽ʹΑ࣮ͬͯݱ • ҰํͰɼFirewallͷϙϦγʔWAFͷύλʔϯͱ͍ͬͨಋೖઌͷڥ
WebαʔϏεͷಛੑʹґଘ͢Δͷมߋʹै͢ΔΈ͕ඞཁ 9 ηΩϡϦςΟରࡦͷӡ༻ͱ՝: ᶅͷΞϓϩʔν ޮతͳηΩϡϦςΟରࡦͷͨΊҡ࣋ཧΛࣗಈԽ͍ͨ͠
ݚڀͷత
• ใηΩϡϦςΟʹؔ͢ΔΠϯγσϯτͷൃੜසࣾձతӨڹʑ֦େ • ଟ༷Խ͢ΔαΠόʔ߈ܸʹରԠ͢ΔͨΊɼଟޚ͕ओྲྀͱͳΔ • ڧݻͳηΩϡϦςΟͱͷτϨʔυΦϑͰ͋ΔརศੑͷԼɾίετӡ༻ෛՙ ͷ૿େΛղফ͠ɼܧଓՄೳͳηΩϡϦςΟରࡦͷΈΛ࡞Δ͜ͱ͕ใγε ςϜͷ։ൃӡ༻ऀʹͱͬͯॏཁ 11 ݚڀͷత
͜ΕΒΛ࣮ݱ͢ΔͨΊͷΈΛʮͳΊΒ͔ͳηΩϡϦςΟʯͱͯ͠ఏҊ 12 ఏҊͷࠎࢠ ᶃ ඞཁͳ࣌ʹඞཁ࠷খݶͷηΩϡϦςΟΛఏڙ → ঢ়گݸʑਓʹ࠷దԽ͢Δ͜ͱͰརศੑͷҡ࣋ɾෆཁͳίετൃੜͷճආ ᶄ ࠷దͳαʔϏεΛࣗಈతʹఏڙ →
ঢ়گݸʑਓͷѲ࠷దԽ͕ࣗಈతʹߦΘΕΔ͜ͱͰӡ༻ෛՙΛݮ
ͳΊΒ͔ͳγεςϜ
• ใγεςϜͷ͜ͱΛ͍͏ͷΈͳΒͣɼޓ͍ʹӨڹΛٴ΅͠߹͏ܧଓతͳؔ ʹ͋Δར༻ऀʢϢʔβ͓Αͼ։ൃӡ༻ऀʣͱใγεςϜͱ͔ΒͳΔ૯ମͱ͠ ͯͷγεςϜ 14 ͳΊΒ͔ͳγεςϜ ग़ॴ܀ྛ݈ଠ ࡾ༔հ দຊ྄հ ͳΊΒ͔ͳγεςϜΛࢦͯ͠
ϚϧνϝσΟΞɺࢄɺڠௐͱϞόΠϧʢ%*$0.0ʣγϯϙδϜ # +VM
• ཁ݅ʢ1ʣɿར༻ऀͱใγεςϜͱ͕ܧଓతͳؔΛऔΓ࣋ͭաఔʹ͓͍ ͯɼར༻ऀͦΕͧΕʹݻ༗ͷίϯςΩετΛݟग़ͨ͠Γɼ৽ͨͳίϯςΩετ Λग़ͨ͠ΓͰ͖Δ͜ͱ • ཁ݅ʢ2ʣɿཁ݅ʢ1ʣΛɼར༻ऀʹΑΔ໌ࣔతͳૢ࡞Λ՝͢͜ͱͳ࣮͘ݱͰ ͖Δ͜ͱ • ཁ݅ʢ3ʣɿཁ݅ʢ1ʣ͓Αͼʢ2ʣʹΑͬͯಘΒΕͨίϯςΩετʹجͮ ͖ɼใγεςϜ͕ར༻ऀʹରͯ͠࠷దͳαʔϏεΛࣗಈతʹఏڙͰ͖Δ͜ͱ
15 ͳΊΒ͔ͳγεςϜ ग़ॴ܀ྛ݈ଠ ࡾ༔հ দຊ྄հ ͳΊΒ͔ͳγεςϜΛࢦͯ͠ ϚϧνϝσΟΞɺࢄɺڠௐͱϞόΠϧʢ%*$0.0ʣγϯϙδϜ # +VM
2. ͳΊΒ͔ͳηΩϡϦςΟ
• ڧݻͳηΩϡϦςΟΛ࣮ݱ͢ΔηΩϡϦςΟରࡦͷͨΊʹɼརศੑίετ ͷ໘Ͱͷॊೈੑͱɼӡ༻ͷ໘Ͱͷޮతͳҡ࣋ཧΛཱ͕྆ඞཁ • ʮͳΊΒ͔ͳγεςϜʯͷཁ݅Λຬͨ͢͜ͱͰ͜ΕΛղܾ͢Δ 17 ͳΊΒ͔ͳγεςϜʹΑΔηΩϡϦςΟͷ࣮ݱ ᶃ ݸʑਓʹ߹Θͤͨඞཁ࠷খݶͷηΩϡϦςΟରࡦʹΑͬͯॊೈੑΛ֬อ →
ͳΊΒ͔ͳγεςϜʹ͓͚Δཁ݅ʢ3ʣ ᶄ ར༻ऀͱηΩϡϦςΟγεςϜͷؔੑΛࣗಈ͔ͭܧଓతʹݕग़ɽݸผԽΛ ؚΉηΩϡϦςΟରࡦΛޮతʹҡ࣋ཧ → ͳΊΒ͔ͳγεςϜʹ͓͚Δཁ݅ʢ1ʣͱʢ2ʣ
18 ͳΊΒ͔ͳηΩϡϦςΟ ग़ॴʮϖύϘݚڀॴʯºʮίίϯٕज़ݚڀࣨʯʮͳΊΒ͔ͳηΩϡϦςΟʯͷ࣮ݱʹ͚ͨڞಉݚڀՌͱͯ͠จ͓ΑͼΦʔϓϯιʔειϑτΣΞΛൃද γεςϜͷར༻ӡ༻ʹ͓͚Δ͞·͟·ͳোนʢΰπΰ πʣΛऔΓআ͖ɺݸʑਓʹ߹ΘͤͨʢύʔιφϥΠζ͠ ͨʣηΩϡϦςΟΛඞཁͳ࣌ʹඞཁ࠷খݶͷػೳͱͯ͠ ఏڙ͢Δ͜ͱͰɺརศੑΛଛͳΘͣɺ͔ͭϓϥΠόγʔ ใकΓͳ͕ΒηΩϡϦςΟΛ࣮ݱ͢ΔΈɻ l z
19
• ใγεςϜͷڥքɼ͢ͳΘͪϢʔβ͘͠։ൃӡ༻ऀͱίΞαʔϏεͷத ؒʹҐஔ͢Δ • ར༻ऀଆͷEdgeͰཁٻʹର͢ΔηΩϡϦςΟݕূΛߦ͏ • ཁٻʹର͢ΔηΩϡϦςΟཁ݅ͷબݸਓ·ͨݸʑʹ࠷దԽ • ։ൃऀଆͷEdgeͰίΞαʔϏεʹର͢ΔηΩϡϦςΟཁ݅Λड͚͚ɼ۩ ମɾݸผͷϧʔϧͷࣗಈੜৼΓ͚Λߦ͏ɽ
• ηΩϡϦςΟΦʔέετϨʔλͱͷ࿈ܞ 20 Edge
21 ηΩϡϦςΟΦʔέετϨʔλ ϩάऩूɾݕࡧ จ຺ղੳ ϧʔϧద༻ ηΩϡϦςΟΦʔέετϨʔλ ใγεςϜͱϢʔβͱͷΓͱΓʹؔ͢ΔେͳϩάΛऩ ू͠ɺඞཁʹԠͯ͡ݕࡧͰ͖ΔػೳΛఏڙ ཁٻΛ࣌ܥྻʹଊ͑Δ͜ͱͰจ຺ΛѲ͠ɺͦͷ༰ม Խʹରͯ͠దͳϥϕϦϯάͱܖػΛ༩͑Δ
จ຺ղੳ͔ΒಘΒΕͨϥϕϦϯάܖػʹج͍ͮͯɺ࠷ద͔ ͭඞཁ࠷খݶͷηΩϡϦςΟΛఏڙ͢ΔαʔϏεΛߏ ཁٻจ຺ʹରͯ͠ɺͦͷ࣌ʑʹඞཁ࠷খݶͷηΩϡϦςΟ ͷఏڙΛҡ࣋͢ΔΈɻԼهͷίϯϙωϯτ͔ΒͳΔɻ
3. ͳΊΒ͔ͳηΩϡϦςΟͷ ࣮ݱʹ͚ͨ෦ݚڀ
SQLΫΤϦͷϗϫΠτϦετࣗಈ࡞
• ͳΊΒ͔ͳηΩϡϦςΟʹݶΒͣɼҰൠతͳηΩϡϦςΟରࡦͰɼอޢର ͷใγεςϜʹैͯ͠ɼηΩϡϦςΟཁ݅Λߋ৽͢Δඞཁ͕͋Δɽ • ఏҊγεςϜͰɼݸʑਓʹ߹ΘͤͨηΩϡϦςΟΛඞཁͳ࣌ʹඞཁ࠷খݶͷ ػೳͱͯ͠ఏڙ͢ΔͨΊʹηΩϡϦςΟཁ݅ଟ༷Խ͢Δɽ • ͜ΕΒΛӡ༻ෛՙΛߴΊͣʹղܾ͢ΔʹɼηΩϡϦςΟཁ݅ͷߋ৽ΛਓखΛ հͣ͞ʹߦ͑ΔΈ͕ඞཁͱͳΔɽ 24
ӡ༻໘Ͱͷޮతͳҡ࣋ཧ
SQLΫΤϦͷϗϫΠτϦετࣗಈ࡞ 25 ଜ໋ Ѩ෦ത ੁ ྗ݈࣍ দຊ྄հ 8FCΞϓϦέʔγϣϯςετΛ༻͍ͨ42-ΫΤϦͷϗϫΠτϦετࣗಈ࡞ख๏ Πϯλʔωοτͱӡ༻ٕज़γϯϙδϜจू WPMVNF
QBHFTr OPW • WebΞϓϦέʔγϣϯͷࣗಈςετ࣌ʹൃߦ͞ ΕΔΫΤϦΛߏԽ͠ɼσʔλϕʔεFirewallͷ ϗϫΠτϦετͱͯ͠ར༻ • ఏҊγεςϜͰɼ։ൃӡ༻ऀଆͷEdgeʹର͠ ͯWebΞϓϦέʔγϣϯͷࣗಈςετ͕ొ͞ Εɼੜ͞ΕͨϗϫΠτϦετΛηΩϡϦςΟ ཁ݅ͱͯ͠ߋ৽
ଟ༷Խ͢ΔηΩϡϦςΟཁ݅ͷࣗಈੜ 26 ҰൠϢʔβ 6TFS"ཁٻ༻ͷ*' 6TFS#ཁٻ༻ͷ*' 0QT"ͷηΩϡϦςΟཁٻ 0QT" ϢʔβγεςϜ܈ ӡ༻։ൃऀγεςϜ ใγεςϜ
ݸผͷཁٻ ʢจ຺ʣ ηΩϡϦςΟ ΦʔέετϨʔλ ಛݖϢʔβ ΞϓϦέʔγϣϯͷࣗಈςετ͔ΒηΩϡϦςΟཁٻΛࣗಈ ੜ<> ࠓޙɺϢʔβཁٻͷจ຺ʹԠͯ͡ɺͷηΩϡϦςΟཁٻΛ ద༻͠Θ͚Δʢ͋Δ42-จΛಛݖϢʔβʹڐՄ͢Δʣऔ ΓΈΛߦ͏ ଜ໋ Ѩ෦ത ੁ ྗ݈࣍ দຊ྄հ 8FCΞϓϦέʔγϣϯςετΛ༻͍ͨ42-ΫΤϦͷϗϫΠτϦετࣗಈ࡞ख๏ Πϯλʔωοτͱӡ༻ٕज़γϯϙδϜจू WPMVNF QBHFTr OPW
Hayabusa
28 طଘݚڀ: Hayabusa Ѩ෦ത ౡܚҰ ٶຊେี ؔ୩༐࢘ ੴݪ༸ Ԭా தଜྒྷ
দӜ࢙ ࣰాཅҰ ࣌ؒ࣠ݕࡧʹ࠷దԽͨ͠εέʔϧΞτՄೳͳߴϩάݕࡧΤϯδϯͷ࣮ݱͱධՁ ใॲཧֶձจࢽ ר߸ QBHFT NBS • ͳΊΒ͔ͳηΩϡϦςΟʹݶΒͣɼҰൠతͳηΩϡϦςΟରࡦͰɼϩάΛҰ ՕॴʹूΊɼूதॲཧΛߦ͏߹͕ଟ͍ • େྔͷϩάΛऩू͔ͭ͠ॲཧ͢ΔͨΊͷࣄલݚڀͱͯ͠ɼHayabusaΛ։ൃ • ධՁ࣮ݧͰɼ144ԯߦͷsyslogσʔλͷશจݕࡧ͕7ඵͰྃ
• ϚΠΫϩηΩϡϦςΟαʔϏε͕࣮ߦ͞ΕΔEdgeࣗମʹେྔͷϩά͕ੵ͞ ΕΔɼ͔ͭEdgeͷେʢ1ສʙʣ • ϩάΛूதతʹॲཧͤ͞ΔʹɺϩάͷసૹԆଳҬͷѹഭ͕ݒ೦͞ΕΔ • EdgeͰͷࢄॲཧ • EdgeͷதͰࣗతʹॲཧΛ݁ͤ͞Δ •
EdgeͷதͰඞཁͳσʔλͷΈूܭͯ͠ɺΦʔέετϨʔλʹୡ 29 EdgeΛఆͨ͠ϩάॲཧ
Scalable Edge Log Processing 30 • ϩάॲཧΛEdgeدͤΔ • EdgeͰͷϩάੵ •
EdgeͰͷϩάॲཧͷ݁ʢࣗݾ݁ or ݁ ՌͷΈ֎෦సૹʣ • αʔϏεσΟεΧόϦʔͷԠ༻ • EdgeͰಈ͘ϚΠΫϩαʔϏεͷϩάΛऩ ूɾॲཧ • ͦͷͨΊͷϚΠΫϩαʔϏεͷ࠷దԽϧʔ ςΟϯά
Kaburaya
• Edge͕ಁաతʹৼΔ͏ͨΊʹύϑΥʔϚϯε͕ॏཁ • ҰํͰɼݸਓԽʹΑͬͯEdge͕૿Ճ͢ΔͨΊɼࢿݯࡃͷ࠷దԽ͕ٻΊΒ ΕΔɽ • ಉ༷ʹɼݸਓԽʹ͍֤Edgeͷଟ༷ੑ͕૿ͨ͢ΊɼखಈͰͷνϡʔχϯά ࠔͱͳΔɽ 32 Edgeʹ͓͚ΔࢿݯεέδϡʔϦϯάͷඞཁੑ
33 Edgeʹ͓͚ΔࢿݯεέδϡʔϦϯάͷඞཁੑ &EHF ϚΠΫϩηΩϡϦςΟαʔϏε࣮ߦͷฒྻԽ ֤ϚΠΫϩηΩϡϦςΟαʔϏεͷ࣮ߦج൫ͷΦʔτεέʔϦϯά • ύϑΥʔϚϯε্ʹϚΠΫϩηΩϡϦςΟαʔ Ϗε࣮ߦͷฒྻԽ࣮ߦج൫ͷεέʔϦϯά͕༗ޮ • ͜ΕΒΛෛՙࢿݯ੍Λߟྀͯ͠࠷దԽ͍ͨ͠
QSPDFTTͰෳϚΠΫϩηΩϡϦςΟαʔ Ϗε͕࣮ߦ͞ΕΔ߹ͳͲ ֤ϚΠΫϩηΩϡϦςΟαʔϏε͕ίϯς φͰఏڙ͞ΕΔ߹ͳͲ ⁞ ⁞
• ϑΟʔυόοΫ੍ޚΛ༻͍ͯɼରͷλεΫͷಛੑΛࣄલʹΔ͜ͱͳ͘ɼ Ԡత͔ͭܧଓతʹ࠷దͳฒߦΛٻΊΔ • ఏҊγεςϜͰɼݸผԽ͞ΕͨηΩϡϦςΟݕূ༰ͱॲཧ࣌ؒΛࣄલ ʹΔ͜ͱͳ͘ɼ࠷దͳΈ߹ΘͤΛ࣮ߦ࣌ʹࣗಈͰಋ͘ Kaburaya 34 :VTVLF.JZBLF 0QUJNJ[BUJPOGPS/VNCFSPGHPSPVUJOFT6TJOH'FFECBDL$POUSPM
(PQIFS$PO.BSSJPUU.BSRVJT4BO%JFHP.BSJOB $BMJGPSOJB +VMZ
4. ߟͱ·ͱΊ
• ͳΊΒ͔ͳγεςϜͷཁ݅ʹج͖ͮηΩϡϦςΟରࡦͷݸਓͷ࠷దԽΛࣗಈ͔ ͭܧଓతʹߦ͏ηΩϡϦςΟγεςϜΛఏҊ • EdgeͰͷϩάऩूɾݕࡧͷ؍͔ΒHayabusaͷ֦ு • ޮతͳҡ࣋ཧʹඞཁͳηΩϡϦςΟఆٛͷࣗಈੜ • ݸผԽ͞Εͨଟ༷ͳڥʹ͓͚ΔΦʔτεέʔϦϯάͷ࠷దԽ •
ࠓޙίϯςΩετղੳͱηΩϡϦςΟରࡦͷϚονϯάͷ࣮ݱͱEdgeͷཧత ͳஔܦ࿏બʹؔ͢Δݕ౼ΛਐΊΔ • ෳͷใγεςϜΛԣஅ͢ΔڥΛલఏͱͨ͠EdgeͷઃܭΛ௨࣮ͯ͠༻ੑͷ ߴ͍γεςϜΛ࣮ݱ͢Δ 36 ߟͱ·ͱΊ
None