Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高速化・並列化・標準化で スケールするML予測システムの開発
Search
Daiki Ikeshima
July 08, 2021
Technology
5
3.1k
高速化・並列化・標準化で スケールするML予測システムの開発
Daiki Ikeshima
July 08, 2021
Tweet
Share
More Decks by Daiki Ikeshima
See All by Daiki Ikeshima
MLOpsの「あるある」課題の解決と、そのためのライブラリgokart
mski_iksm
1
1.4k
gokartのキャッシュ競合防止のロック機能
mski_iksm
0
2.2k
macのunicode正規化.pdf
mski_iksm
0
33k
実臨床・Webサービス領域での機械学習研究 開発の標準化
mski_iksm
8
26k
pythonでメタプログラミング(メタクラス編)
mski_iksm
1
480
パイプラインツールgokartのタスク競合を解消した話
mski_iksm
0
210
Other Decks in Technology
See All in Technology
ビジネス文書に特化した基盤モデル開発 / SaaSxML_Session_2
sansan_randd
0
260
Unson OS|48時間で「売れるか」を判定する AI 市場検証プラットフォーム
unson
0
170
Kiroでインフラ要件定義~テスト を実施してみた
nagisa53
3
300
MCP認可の現在地と自律型エージェント対応に向けた課題 / MCP Authorization Today and Challenges to Support Autonomous Agents
yokawasa
5
1.7k
OPENLOGI Company Profile for engineer
hr01
1
37k
Amazon Bedrock AgentCoreのフロントエンドを探す旅 (Next.js編)
kmiya84377
1
100
AI人生苦節10年で会得したAIがやること_人間がやること.pdf
shibuiwilliam
1
270
SRE新規立ち上げ! Hubbleインフラのこれまでと展望
katsuya0515
0
160
AIエージェントを現場で使う / 2025.08.07 著者陣に聞く!現場で活用するためのAIエージェント実践入門(Findyランチセッション)
smiyawaki0820
6
600
【CEDEC2025】『Shadowverse: Worlds Beyond』二度目のDCG開発でゲームをリデザインする~遊びやすさと競技性の両立~
cygames
PRO
1
290
LLMでAI-OCR、実際どうなの? / llm_ai_ocr_layerx_bet_ai_day_lt
sbrf248
0
430
Oracle Cloud Infrastructure:2025年7月度サービス・アップデート
oracle4engineer
PRO
1
110
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Rails Girls Zürich Keynote
gr2m
95
14k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.5k
Agile that works and the tools we love
rasmusluckow
329
21k
Balancing Empowerment & Direction
lara
1
530
YesSQL, Process and Tooling at Scale
rocio
173
14k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
For a Future-Friendly Web
brad_frost
179
9.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Transcript
ߴԽɾฒྻԽɾඪ४ԽͰ εέʔϧ͢ΔML༧ଌγεςϜͷ։ൃ ʲSansan×Unipos×M3ʳMLOpsษڧձ ΤϜεϦʔגࣜձࣾɹౢେथ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ Ϟσϧ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ Ϟσϧ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ Ϟσϧ ଐਓԽ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ Ϟσϧ ଐਓԽ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
Ϟσϧ ଐਓԽ ฒߦͯ͠ΔҊ݅ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ྲྀ༻ ྲྀ༻ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ྲྀ༻ ྲྀ༻ όά ʁ ʁ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
̏՝ʹରԠ͢ΔͨΊʹ։ൃ͞ΕͨMLγεςϜ: Yule XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ
͜ͷલͱಉ͡ײ͡Ͱ ͳΔૣͰʂ ࠓिதʹʂ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక Yule AutoMLͳ ਪଌγεςϜ ଐਓԽ λΠτͳక ฒߦͯ͠ΔҊ݅ ඪ४Խ ฒྻԽ ߴԽ
Yule: ଟϞσϧΛΞϯαϯϒϧͯ͠ਪ·ͰҰؾʹ࣮ߦ 12 ಛநग़ GBDT Neural Network ϚϧνλεΫֶश సҠֶश ֶशࡁ
Ϟσϧ Ξϯαϯϒϧ ਪ ڭࢣσʔλ
ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ 13 ਪ σʔλऩू ಛ࡞ Ϟσϧ࡞ ֶश࣮ߦ ֶशࢹ ֶशධՁ վળΠςϨʔγϣϯ
Λߴʹճ͢ ։ൃऀҎ֎Ͱ ࣮ߦͰ͖ΔΑ͏ʹ ଟͷҊ݅Λ ฒߦͯ͠ରԠͰ͖Δ Ҋ݅̍ Ҋ݅̎ Ҋ݅̏ ඪ४Խ ฒྻԽ ߴԽ
ᶃ KubernetesΛ༻͍ͯλεΫΛࢄॲཧ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ᶅ TensorBoardʹΑΔֶशࢹ ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ
14 ·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ ඪ४Խ ฒྻԽ ߴԽ ඪ४Խ ߴԽ ߴԽ
15 ಛ࡞ʙֶशʙਪΛKubernetes্Ͱ࣮ࢪ ֶश ਪ CVͷFold͝ͱʹϊʔυࢄ ਪରϢʔβΛׂͯ͠ϊʔυࢄ ᶃ KubernetesΛ༻͍ͯࢄॲཧ ฒྻԽ ߴԽ
16 • ཁ݅ʹ߹ΘͤͯϊʔυϓʔϧΛ͍͚Δ • GKEͷϓϦΤϯϓςΟϒϧϊʔυΛͬͯྉۚΛઅ —> ΨϯΨϯࢄͰ͖Δ • ෳͷֶशਪΛಉ࣌ฒߦʹճͤΔ •
࣮ݧΠςϨʔγϣϯ͕ߴԽ͠ɺੑೳվળʹूதͰ͖Δ ֶश ਪ CPU༏ઌϊʔυ ϝϞϦ༏ઌϊʔυ ฒྻԽ ߴԽ ᶃ KubernetesΛ༻͍ͯࢄॲཧ
17 ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ • ڭࢣσʔλͷύε • ಛબํ๏ • Ϟσϧͷछྨɾύϥϝλ •
ίʔυͷίϛοτϋογϡɹ ઃఆϑΝΠϧ Yule Kubernetes GCR BigQuery GCS docker Πϝʔδ ಛ σʔλ ڭࢣ σʔλ • ࣮ݧઃఆΛઃఆϑΝΠϧʹهड़͢Δ͚ͩͰ • ઃఆʹԊͬͯdockerΠϝʔδ/σʔλΛGCR, BQ, GCSͳͲ͔Βऔಘ • KubernetesʹࢄσϓϩΠ ίʔυ hash: ff34 tag: ff34 push build & push ඪ४Խ
18 • ڭࢣσʔλͷύε • ಛબํ๏ • Ϟσϧͷछྨɾύϥϝλ • ίʔυͷίϛοτϋογϡɹ ઃఆϑΝΠϧ
Yule Kubernetes • ઃఆϑΝΠϧΛॻ͚ͩ͘ͰֶशΛ࣮ߦͰ͖ΔΑ͏ʹͳͬͨ • ։ൃͱ࣮ߦ͕͠ίʔυΛҙֶࣝͤͣशΛճͤΔ • ➔ίΞ։ൃऀҎ֎Ͱ࣮ߦՄೳʹ • ࣮ݧઃఆͱίʔυΛඥ͚ • ࠷৽͚ͩͰͳ͘աڈͷίʔυࢀরͰ͖Δ • ➔࠶ݱੑΛ୲อ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ඪ४Խ
ᶅ TensorBoardʹΑΔֶशࢹ 19 KubernetesͳͲϦϞʔτڥͰࢄֶͯ͠श͢ΔͱܦաΛѲͮ͠Β͍ ੑೳվળͷΠςϨʔγϣϯ͕ૣ͘ͳͬͨ TensorBoardͰֶशۂઢͳͲֶशϝτϦΫεΛ ϦΞϧλΠϜࢹ ɹˠ ֶशվળͷώϯτΛಘΒΕΔ ߴԽ
gokartͱ • pythonύΠϓϥΠϯϥΠϒϥϦ • ॲཧΛTaskͱݺΕΔΫϥε୯ҐͰґଘؔͱͱʹهड़͢Δ • ґଘؔΛղܾ͠ͳ͕ΒॲཧΛ͢͢ΊΔ • ్தܦաΩϟογϡ͞Ε͍ͯΔͨΊɺಉ͡ॲཧ̎ճলུͰ͖Δ ᶆ
gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 20 Ҋ݅ؒͰڞ௨ͯ͠͏ಛྔσʔλ͍·Θ͍ͨ͠ AIνʔϜͰgokartΛ։ൃ͠׆༻ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ ߴԽ
gokartͱ • pythonύΠϓϥΠϯϥΠϒϥϦ • ॲཧΛTaskͱݺΕΔΫϥε୯ҐͰґଘؔͱͱʹهड़͢Δ • ґଘؔΛղܾ͠ͳ͕ΒॲཧΛ͢͢ΊΔ • ్தܦաΩϟογϡ͞Ε͍ͯΔͨΊɺಉ͡ॲཧ̎ճলུͰ͖Δ ᶆ
gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 21 Ҋ݅ؒͰڞ௨ͯ͠͏ಛྔσʔλ͍·Θ͍ͨ͠ AIνʔϜͰgokartΛ։ൃ͠׆༻ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ Ϟσϧ ֶश̎ ߴԽ
ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 22 • ಛྔͷੜϓϩηε͕ίʔυԽ͞Ε͍ͯΔ • ಛྔσʔλ͕Ωϟογϡ • ➔ Ҋ݅ʹΑΒ͍ͣճͤΔ
• ➔ ઃఆΛม͑ͨ࠶࣮ݧͰ࠶ར༻ʹΑΔ࣌ؒॖ • ϓϩηε్͕தͰམ్ͪͯதͷΩϟογϡ͔Β࠶։ • ➔ ҆৺ͯ͠GKEͷϓϦΤϯϓςΟϒϧϊʔυΛ͑Δ • Ωϟογϡ࠶ར༻ʹΑ࣮ͬͯߦ࣌ؒΛॖͰ͖ͨ • ϓϦΤϯϓςΟϒϧͷ׆༻ͰGKEͷྉۚͷઅ͕Ͱ͖ͨ ߴԽ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ Ϟσϧ ֶश̎
BigQuery Ϣʔβ σʔλ هࣄӾཡ σʔλ ΫϦοΫ σʔλ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ 23
• YuleҎ֎ͷMLϓϩμΫτͰ͍ͬͯΔσʔλࣅ͍ͯΔ • BQ͔Βσʔλऔಘ͢ΔͨΊʹͦΕͧΕSQLΛॻ͔ͳ͍ͱ͍͚ͳ͍ ඪ४Խ Yule ML1 ML2 ML3 SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL
BigQuery Ϣʔβ σʔλ هࣄӾཡ σʔλ ΫϦοΫ σʔλ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ 24
• μϯϩʔυ༻ͷڞ௨ϥΠϒϥϦΛ༻ • طଘͷμϯϩʔυϝιου͕͍·ΘͤΔ ➔ SQLΛϓϩμΫτ͝ͱʹॻ͔ͳͯ͘ࡁΉ • gokartͰඪ४Խ͞Ε͓ͯΓಡΈॻ͖͍͢͠ • ➔ ୭Ͱ؆୯ʹ͑Δ ඪ४Խ Yule ML1 ML2 ML3 mushroom μϯϩʔυ༻ ϥΠϒϥϦ SQL ϝιουΛར༻
ᶃ KubernetesΛ༻͍ͯλεΫΛࢄॲཧ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ᶅ TensorBoardʹΑΔֶशࢹ ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ
25 ·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ ඪ४Խ ฒྻԽ ߴԽ ඪ४Խ ߴԽ ߴԽ
26 ΤϜεϦʔͰMLγεςϜΛ։ൃɾվળͯ͘͠ΕΔਓΛืूதͰ͢ https://jobs.m3.com/engineer/ ̏՝Λղܾ͢Δ͜ͱͰεέʔϧ͢ΔγεςϜ͕Ͱ͖ͨ • ߴԽɿվળΠςϨʔγϣϯΛߴʹճͤͨ • ฒྻԽɿଟͷҊ݅Λಉ࣌ਐߦͰ͜ͳͤͨ • ඪ४Խɿ։ൃ/࣮ߦΛͨ͜͠ͱͰɺ৽نϝϯόʔͰ͙͢ʹ࣮ߦͰ͖ͨ
·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ