Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高速化・並列化・標準化で スケールするML予測システムの開発
Search
Daiki Ikeshima
July 08, 2021
Technology
5
3.2k
高速化・並列化・標準化で スケールするML予測システムの開発
Daiki Ikeshima
July 08, 2021
Tweet
Share
More Decks by Daiki Ikeshima
See All by Daiki Ikeshima
MLOpsの「あるある」課題の解決と、そのためのライブラリgokart
mski_iksm
1
1.5k
gokartのキャッシュ競合防止のロック機能
mski_iksm
0
2.4k
macのunicode正規化.pdf
mski_iksm
0
35k
実臨床・Webサービス領域での機械学習研究 開発の標準化
mski_iksm
8
26k
pythonでメタプログラミング(メタクラス編)
mski_iksm
1
510
パイプラインツールgokartのタスク競合を解消した話
mski_iksm
0
230
Other Decks in Technology
See All in Technology
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
1.8k
Python 3.14 Overview
lycorptech_jp
PRO
1
120
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
220
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
500
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
250
生成AIを利用するだけでなく、投資できる組織へ / Becoming an Organization That Invests in GenAI
kaminashi
0
100
AI時代の新規LLMプロダクト開発: Findy Insightsを3ヶ月で立ち上げた舞台裏と振り返り
dakuon
0
120
新 Security HubがついにGA!仕組みや料金を深堀り #AWSreInvent #regrowth / AWS Security Hub Advanced GA
masahirokawahara
1
2.1k
文字列の並び順 / Unicode Collation
tmtms
3
590
re:Invent 2025 ふりかえり 生成AI版
takaakikakei
1
210
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
2
190
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
790
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.3k
Fireside Chat
paigeccino
41
3.7k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
4 Signs Your Business is Dying
shpigford
186
22k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Navigating Team Friction
lara
191
16k
Bash Introduction
62gerente
615
210k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
It's Worth the Effort
3n
187
29k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
730
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Transcript
ߴԽɾฒྻԽɾඪ४ԽͰ εέʔϧ͢ΔML༧ଌγεςϜͷ։ൃ ʲSansan×Unipos×M3ʳMLOpsษڧձ ΤϜεϦʔגࣜձࣾɹౢେथ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ Ϟσϧ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ Ϟσϧ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ Ϟσϧ ଐਓԽ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ Ϟσϧ ଐਓԽ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
Ϟσϧ ଐਓԽ ฒߦͯ͠ΔҊ݅ MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ྲྀ༻ ྲྀ༻ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
MLར༻Ҋ݅ͰΑ͋͘Δ̏՝ XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ ͜ͷલͱಉ͡ײ͡Ͱ
ͳΔૣͰʂ ࠓिதʹʂ Ϟσϧ ྲྀ༻ ྲྀ༻ όά ʁ ʁ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక MLΤϯδχΞ
̏՝ʹରԠ͢ΔͨΊʹ։ൃ͞ΕͨMLγεςϜ: Yule XXʹڵຯͷ͋Δਓʹ Ξϓϩʔν͍ͨ͠ YYΛങͬͯ͘Εͦ͏ ͳਓΛΓ͍ͨ ୀձͦ͠͏ͳਓʹ ࢪࡦΛଧ͍ͪͨ ZZʹߠఆҙݟͷਓΛ Γ͍ͨ
͜ͷલͱಉ͡ײ͡Ͱ ͳΔૣͰʂ ࠓिதʹʂ ଐਓԽ ฒߦͯ͠ΔҊ݅ λΠτͳక Yule AutoMLͳ ਪଌγεςϜ ଐਓԽ λΠτͳక ฒߦͯ͠ΔҊ݅ ඪ४Խ ฒྻԽ ߴԽ
Yule: ଟϞσϧΛΞϯαϯϒϧͯ͠ਪ·ͰҰؾʹ࣮ߦ 12 ಛநग़ GBDT Neural Network ϚϧνλεΫֶश సҠֶश ֶशࡁ
Ϟσϧ Ξϯαϯϒϧ ਪ ڭࢣσʔλ
ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ 13 ਪ σʔλऩू ಛ࡞ Ϟσϧ࡞ ֶश࣮ߦ ֶशࢹ ֶशධՁ վળΠςϨʔγϣϯ
Λߴʹճ͢ ։ൃऀҎ֎Ͱ ࣮ߦͰ͖ΔΑ͏ʹ ଟͷҊ݅Λ ฒߦͯ͠ରԠͰ͖Δ Ҋ݅̍ Ҋ݅̎ Ҋ݅̏ ඪ४Խ ฒྻԽ ߴԽ
ᶃ KubernetesΛ༻͍ͯλεΫΛࢄॲཧ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ᶅ TensorBoardʹΑΔֶशࢹ ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ
14 ·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ ඪ४Խ ฒྻԽ ߴԽ ඪ४Խ ߴԽ ߴԽ
15 ಛ࡞ʙֶशʙਪΛKubernetes্Ͱ࣮ࢪ ֶश ਪ CVͷFold͝ͱʹϊʔυࢄ ਪରϢʔβΛׂͯ͠ϊʔυࢄ ᶃ KubernetesΛ༻͍ͯࢄॲཧ ฒྻԽ ߴԽ
16 • ཁ݅ʹ߹ΘͤͯϊʔυϓʔϧΛ͍͚Δ • GKEͷϓϦΤϯϓςΟϒϧϊʔυΛͬͯྉۚΛઅ —> ΨϯΨϯࢄͰ͖Δ • ෳͷֶशਪΛಉ࣌ฒߦʹճͤΔ •
࣮ݧΠςϨʔγϣϯ͕ߴԽ͠ɺੑೳվળʹूதͰ͖Δ ֶश ਪ CPU༏ઌϊʔυ ϝϞϦ༏ઌϊʔυ ฒྻԽ ߴԽ ᶃ KubernetesΛ༻͍ͯࢄॲཧ
17 ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ • ڭࢣσʔλͷύε • ಛબํ๏ • Ϟσϧͷछྨɾύϥϝλ •
ίʔυͷίϛοτϋογϡɹ ઃఆϑΝΠϧ Yule Kubernetes GCR BigQuery GCS docker Πϝʔδ ಛ σʔλ ڭࢣ σʔλ • ࣮ݧઃఆΛઃఆϑΝΠϧʹهड़͢Δ͚ͩͰ • ઃఆʹԊͬͯdockerΠϝʔδ/σʔλΛGCR, BQ, GCSͳͲ͔Βऔಘ • KubernetesʹࢄσϓϩΠ ίʔυ hash: ff34 tag: ff34 push build & push ඪ४Խ
18 • ڭࢣσʔλͷύε • ಛબํ๏ • Ϟσϧͷछྨɾύϥϝλ • ίʔυͷίϛοτϋογϡɹ ઃఆϑΝΠϧ
Yule Kubernetes • ઃఆϑΝΠϧΛॻ͚ͩ͘ͰֶशΛ࣮ߦͰ͖ΔΑ͏ʹͳͬͨ • ։ൃͱ࣮ߦ͕͠ίʔυΛҙֶࣝͤͣशΛճͤΔ • ➔ίΞ։ൃऀҎ֎Ͱ࣮ߦՄೳʹ • ࣮ݧઃఆͱίʔυΛඥ͚ • ࠷৽͚ͩͰͳ͘աڈͷίʔυࢀরͰ͖Δ • ➔࠶ݱੑΛ୲อ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ඪ४Խ
ᶅ TensorBoardʹΑΔֶशࢹ 19 KubernetesͳͲϦϞʔτڥͰࢄֶͯ͠श͢ΔͱܦաΛѲͮ͠Β͍ ੑೳվળͷΠςϨʔγϣϯ͕ૣ͘ͳͬͨ TensorBoardͰֶशۂઢͳͲֶशϝτϦΫεΛ ϦΞϧλΠϜࢹ ɹˠ ֶशվળͷώϯτΛಘΒΕΔ ߴԽ
gokartͱ • pythonύΠϓϥΠϯϥΠϒϥϦ • ॲཧΛTaskͱݺΕΔΫϥε୯ҐͰґଘؔͱͱʹهड़͢Δ • ґଘؔΛղܾ͠ͳ͕ΒॲཧΛ͢͢ΊΔ • ్தܦաΩϟογϡ͞Ε͍ͯΔͨΊɺಉ͡ॲཧ̎ճলུͰ͖Δ ᶆ
gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 20 Ҋ݅ؒͰڞ௨ͯ͠͏ಛྔσʔλ͍·Θ͍ͨ͠ AIνʔϜͰgokartΛ։ൃ͠׆༻ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ ߴԽ
gokartͱ • pythonύΠϓϥΠϯϥΠϒϥϦ • ॲཧΛTaskͱݺΕΔΫϥε୯ҐͰґଘؔͱͱʹهड़͢Δ • ґଘؔΛղܾ͠ͳ͕ΒॲཧΛ͢͢ΊΔ • ్தܦաΩϟογϡ͞Ε͍ͯΔͨΊɺಉ͡ॲཧ̎ճলུͰ͖Δ ᶆ
gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 21 Ҋ݅ؒͰڞ௨ͯ͠͏ಛྔσʔλ͍·Θ͍ͨ͠ AIνʔϜͰgokartΛ։ൃ͠׆༻ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ Ϟσϧ ֶश̎ ߴԽ
ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ 22 • ಛྔͷੜϓϩηε͕ίʔυԽ͞Ε͍ͯΔ • ಛྔσʔλ͕Ωϟογϡ • ➔ Ҋ݅ʹΑΒ͍ͣճͤΔ
• ➔ ઃఆΛม͑ͨ࠶࣮ݧͰ࠶ར༻ʹΑΔ࣌ؒॖ • ϓϩηε్͕தͰམ్ͪͯதͷΩϟογϡ͔Β࠶։ • ➔ ҆৺ͯ͠GKEͷϓϦΤϯϓςΟϒϧϊʔυΛ͑Δ • Ωϟογϡ࠶ར༻ʹΑ࣮ͬͯߦ࣌ؒΛॖͰ͖ͨ • ϓϦΤϯϓςΟϒϧͷ׆༻ͰGKEͷྉۚͷઅ͕Ͱ͖ͨ ߴԽ ॲཧ̍ ॲཧ̎ ॲཧ̏ σʔλ̍ σʔλ̎ Ϟσϧ ֶश̍ Ϟσϧ ֶश̎
BigQuery Ϣʔβ σʔλ هࣄӾཡ σʔλ ΫϦοΫ σʔλ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ 23
• YuleҎ֎ͷMLϓϩμΫτͰ͍ͬͯΔσʔλࣅ͍ͯΔ • BQ͔Βσʔλऔಘ͢ΔͨΊʹͦΕͧΕSQLΛॻ͔ͳ͍ͱ͍͚ͳ͍ ඪ४Խ Yule ML1 ML2 ML3 SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL SQL
BigQuery Ϣʔβ σʔλ هࣄӾཡ σʔλ ΫϦοΫ σʔλ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ 24
• μϯϩʔυ༻ͷڞ௨ϥΠϒϥϦΛ༻ • طଘͷμϯϩʔυϝιου͕͍·ΘͤΔ ➔ SQLΛϓϩμΫτ͝ͱʹॻ͔ͳͯ͘ࡁΉ • gokartͰඪ४Խ͞Ε͓ͯΓಡΈॻ͖͍͢͠ • ➔ ୭Ͱ؆୯ʹ͑Δ ඪ४Խ Yule ML1 ML2 ML3 mushroom μϯϩʔυ༻ ϥΠϒϥϦ SQL ϝιουΛར༻
ᶃ KubernetesΛ༻͍ͯλεΫΛࢄॲཧ ᶄ ઃఆϑΝΠϧΛ࡞͢Δ͚ͩͰֶशɾਪΛ࣮ߦͰ͖Δ ᶅ TensorBoardʹΑΔֶशࢹ ᶆ gokartΛͬͯதؒσʔλΛΩϟογϡ͢Δ ᶇ νʔϜڞ௨ͷμϯϩʔυϥΠϒϥϦͰσʔλಡΈࠐΈ
25 ·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ ඪ४Խ ฒྻԽ ߴԽ ඪ४Խ ߴԽ ߴԽ
26 ΤϜεϦʔͰMLγεςϜΛ։ൃɾվળͯ͘͠ΕΔਓΛืूதͰ͢ https://jobs.m3.com/engineer/ ̏՝Λղܾ͢Δ͜ͱͰεέʔϧ͢ΔγεςϜ͕Ͱ͖ͨ • ߴԽɿվળΠςϨʔγϣϯΛߴʹճͤͨ • ฒྻԽɿଟͷҊ݅Λಉ࣌ਐߦͰ͜ͳͤͨ • ඪ४Խɿ։ൃ/࣮ߦΛͨ͜͠ͱͰɺ৽نϝϯόʔͰ͙͢ʹ࣮ߦͰ͖ͨ
·ͱΊ: ߴԽɾฒྻԽɾඪ४ԽͰMLҊ݅3՝Λࠀ