Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Ensemble Feature for Person Re-Identification

Ensemble Feature for Person Re-Identification

論文LT会で作成したPerson Re-Identification論文の説明資料です。

002316653f3db12b80a065fed359b089?s=128

Masanori YANO

April 19, 2019
Tweet

More Decks by Masanori YANO

Other Decks in Science

Transcript

  1. 画像処理&機械学習 論文LT会 #1 Ensemble Feature for Person Re-Identification 2019年4月19日(金) 矢農

    正紀 (Masanori YANO)
  2. 論文 2 Ensemble Feature for Person Re-Identification 論文のURL: https://arxiv.org/abs/1901.05798 ⇒

    Person Re-IdentificationのタスクでSOTAと主張 著者は、中国のArmy Engineering University of PLA 2019年のACMの会議に投稿している模様 選んだ理由 ・Person Re-Identificationのタスクに関心があった ・arXiv論文を検索してみたら上位で、新しかった ・手法を見たら、他のタスクへの応用の可能性もありそう
  3. Person Re-Identificationとは 3 異なるカメラ間の同一人物の認識 ⇒ 入力された人物の画像が、既知のデータの誰に近いか? 引用元: https://www.sciencedirect.com/science/article/pii/S0262885614000262 http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html CUHK03データセットのサンプル

    異なるカメラの配置の例
  4. Person Re-Identificationの課題 4 画像によって、人の映り方が変化する [1] カメラの画角 ・人は移動するので、カメラと人の位置関係が変化 ・撮影したカメラが異なると、画角は(当然)変化 [2] 人の姿勢

    ・人は歩いているので、手足などポーズが変化する (人の画像) = (背格好など人の特徴)+(画角・姿勢の情報) ⇒ 画角・姿勢に引きずられず 人の特徴を抽出したい 引用元: https://arxiv.org/abs/1807.05284
  5. Person Re-Identificationのアプローチ 5 二枚の画像を入力し、同じか違うか判定するCNN ⇒ 既知のデータが多くなると、判定が必要な回数が増大 一枚の画像の特徴ベクトルを出力するCNNを学習 [1] 距離学習 Triplet

    Loss, Contrastive Loss, Cosine Lossなど ⇒ 似ている画像は近い特徴ベクトルに、違う画像は遠く [2] 生成モデル GAN, GAN及びVAE ⇒ 生成モデルを活用して、人の姿勢に依存しない出力に [3] アンサンブル学習 本論文の提案手法
  6. 本論文のアイデア 6 複数のCNNを個別に学習させ、合わせて使うと性能が向上 ただし、学習の時間や管理にかかるコストが増大して不便 ⇒ 途中で分岐する、一つのCNNによって解決を図る ResNet-50べ―スの同じモデルを最大8個アンサンブル学習させた結果

  7. 本論文が提案するEnsembleNet 7 一つのCNNを、途中から複数のブランチに分岐 ・論文ではResNet-50のres_conv5_1レイヤーから分岐 ・ブランチごとに、Average Poolingの処理が違う(後述) ・Reductionでは、全結合ではなく1×1の畳み込みで削減 ・損失関数は、論文では、単純なsoftmax log-loss(後述) EnsembleNetのアーキテクチャ

  8. EnsembleNetで実装した内容(1/2) 8 各々のブランチで、特徴ベクトルの本数を変える [1] 一番目は、Global Average Poolingで1本 [2] 二番目では、2DのAdaptive Average

    Poolingで2本 [3] 三番目では、2DのAdaptive Average Poolingで3本 ⇒ 例えば、二番目で「上半身と下半身」の特徴が得られる EnsembleNetのアーキテクチャ
  9. EnsembleNetで実装した内容(2/2) 9 損失関数は、クラス数に対するsoftmax log-loss = − ෍ =1 log exp(

    ( ) + ) σ =1 exp( ( ) + ) Market, Duke, CUHK03のデータセットでSOTA EnsembleNetの評価結果 横軸はブランチの数で「3」の結果を採用
  10. まとめ 10 本論文では、EnsembleNetを提案 ・途中で分岐する、一つのCNNで学習・推論が可能 ・ResNet-50ベースでPerson Re-IdentificationのSOTA ・今後は、アテンションモデルとの結合を試みるとのこと 所感 ・シンプルなため、本当に効果があるなら役立ちそう ・実装も難しくなさそう(論文はPyTorchで実装とのこと)

    ・初めて見たときから「本当?」と、汎用性に少し疑問