Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ensemble Feature for Person Re-Identification
Search
Masanori YANO
April 19, 2019
Science
1
580
Ensemble Feature for Person Re-Identification
論文LT会で作成したPerson Re-Identification論文の説明資料です。
Masanori YANO
April 19, 2019
Tweet
Share
More Decks by Masanori YANO
See All by Masanori YANO
Novelty Detection Via Blurring
msnr
0
480
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images
msnr
0
540
Pyramid-Based Fully Convolutional Networks for Cell Segmentation
msnr
0
520
Free-Form Image Inpainting with Gated Convolution
msnr
0
970
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
msnr
0
620
Move Evaluation in Go Using Deep Convolutional Neural Networks
msnr
1
810
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
msnr
0
1.1k
Towards Understanding Chinese Checkers with Heuristics, Monte Carlo Tree Search, and Deep Reinforcement Learning
msnr
0
460
SRCNN: Image Super Resolution Using CNN
msnr
0
620
Other Decks in Science
See All in Science
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
230
How were Quaternion discovered
kinakomoti321
2
1.2k
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
130
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
0
300
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
120
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
270
非同期コミュニケーションの構造 -チャットツールを用いた組織における情報の流れの設計について-
koisono
0
210
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
430
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
1.3k
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
170
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.4k
Tensor Representations in Signal Processing and Machine Learning (Tutorial at APSIPA-ASC 2020)
yokotatsuya
0
110
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Site-Speed That Sticks
csswizardry
4
380
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Building Adaptive Systems
keathley
40
2.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
410
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
A designer walks into a library…
pauljervisheath
205
24k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
9
450
Raft: Consensus for Rubyists
vanstee
137
6.8k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Transcript
画像処理&機械学習 論文LT会 #1 Ensemble Feature for Person Re-Identification 2019年4月19日(金) 矢農
正紀 (Masanori YANO)
論文 2 Ensemble Feature for Person Re-Identification 論文のURL: https://arxiv.org/abs/1901.05798 ⇒
Person Re-IdentificationのタスクでSOTAと主張 著者は、中国のArmy Engineering University of PLA 2019年のACMの会議に投稿している模様 選んだ理由 ・Person Re-Identificationのタスクに関心があった ・arXiv論文を検索してみたら上位で、新しかった ・手法を見たら、他のタスクへの応用の可能性もありそう
Person Re-Identificationとは 3 異なるカメラ間の同一人物の認識 ⇒ 入力された人物の画像が、既知のデータの誰に近いか? 引用元: https://www.sciencedirect.com/science/article/pii/S0262885614000262 http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html CUHK03データセットのサンプル
異なるカメラの配置の例
Person Re-Identificationの課題 4 画像によって、人の映り方が変化する [1] カメラの画角 ・人は移動するので、カメラと人の位置関係が変化 ・撮影したカメラが異なると、画角は(当然)変化 [2] 人の姿勢
・人は歩いているので、手足などポーズが変化する (人の画像) = (背格好など人の特徴)+(画角・姿勢の情報) ⇒ 画角・姿勢に引きずられず 人の特徴を抽出したい 引用元: https://arxiv.org/abs/1807.05284
Person Re-Identificationのアプローチ 5 二枚の画像を入力し、同じか違うか判定するCNN ⇒ 既知のデータが多くなると、判定が必要な回数が増大 一枚の画像の特徴ベクトルを出力するCNNを学習 [1] 距離学習 Triplet
Loss, Contrastive Loss, Cosine Lossなど ⇒ 似ている画像は近い特徴ベクトルに、違う画像は遠く [2] 生成モデル GAN, GAN及びVAE ⇒ 生成モデルを活用して、人の姿勢に依存しない出力に [3] アンサンブル学習 本論文の提案手法
本論文のアイデア 6 複数のCNNを個別に学習させ、合わせて使うと性能が向上 ただし、学習の時間や管理にかかるコストが増大して不便 ⇒ 途中で分岐する、一つのCNNによって解決を図る ResNet-50べ―スの同じモデルを最大8個アンサンブル学習させた結果
本論文が提案するEnsembleNet 7 一つのCNNを、途中から複数のブランチに分岐 ・論文ではResNet-50のres_conv5_1レイヤーから分岐 ・ブランチごとに、Average Poolingの処理が違う(後述) ・Reductionでは、全結合ではなく1×1の畳み込みで削減 ・損失関数は、論文では、単純なsoftmax log-loss(後述) EnsembleNetのアーキテクチャ
EnsembleNetで実装した内容(1/2) 8 各々のブランチで、特徴ベクトルの本数を変える [1] 一番目は、Global Average Poolingで1本 [2] 二番目では、2DのAdaptive Average
Poolingで2本 [3] 三番目では、2DのAdaptive Average Poolingで3本 ⇒ 例えば、二番目で「上半身と下半身」の特徴が得られる EnsembleNetのアーキテクチャ
EnsembleNetで実装した内容(2/2) 9 損失関数は、クラス数に対するsoftmax log-loss = − =1 log exp(
( ) + ) σ =1 exp( ( ) + ) Market, Duke, CUHK03のデータセットでSOTA EnsembleNetの評価結果 横軸はブランチの数で「3」の結果を採用
まとめ 10 本論文では、EnsembleNetを提案 ・途中で分岐する、一つのCNNで学習・推論が可能 ・ResNet-50ベースでPerson Re-IdentificationのSOTA ・今後は、アテンションモデルとの結合を試みるとのこと 所感 ・シンプルなため、本当に効果があるなら役立ちそう ・実装も難しくなさそう(論文はPyTorchで実装とのこと)
・初めて見たときから「本当?」と、汎用性に少し疑問