Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
JAWS-UG Kobe Alexa Meetup And AI Global Meetup
Search
mt8.biz
August 30, 2017
Technology
0
180
JAWS-UG Kobe Alexa Meetup And AI Global Meetup
mt8.biz
August 30, 2017
Tweet
Share
More Decks by mt8.biz
See All by mt8.biz
WP ZoomUP 40 - Save JP Loss
mt8
0
520
2019-06-26-JBUG_KOBE-_3.pdf
mt8
1
310
[Brushup-UG #2]書籍執筆でBrushupを使いました!
mt8
4
250
JBUG 神戸 #2
mt8
0
890
wbkobe 77
mt8
0
110
jBUG Kobe #1 Backlog World reCap
mt8
0
1.3k
jBUG Kobe #1 Backlog World reCap
mt8
0
54
wbkobe67
mt8
1
120
wbkobe-56
mt8
0
300
Other Decks in Technology
See All in Technology
【Kaigi on Rails 事後勉強会LT】MeはどうしてGirlsに? 私とRubyを繋いだRail(s)
joyfrommasara
0
170
AI ReadyなData PlatformとしてのAutonomous Databaseアップデート
oracle4engineer
PRO
0
230
ガバメントクラウド(AWS)へのデータ移行戦略の立て方【虎の巻】 / 20251011 Mitsutosi Matsuo
shift_evolve
PRO
2
170
AWS 잘하는 개발자 되기 - AWS 시작하기: 클라우드 개념부터 IAM까지
kimjaewook
0
120
Vibe Coding Year in Review. From Karpathy to Real-World Agents by Niels Rolland, CEO Paatch
vcoisne
0
110
AIツールでどこまでデザインを忠実に実装できるのか
oikon48
6
2.9k
AI時代だからこそ考える、僕らが本当につくりたいスクラムチーム / A Scrum Team we really want to create in this AI era
takaking22
7
3.9k
AWSにおけるTrend Vision Oneの効果について
shimak
0
140
許しとアジャイル
jnuank
1
140
AIAgentの限界を超え、 現場を動かすWorkflowAgentの設計と実践
miyatakoji
1
160
能登半島地震で見えた災害対応の課題と組織変革の重要性
ditccsugii
0
180
カンファレンスに託児サポートがあるということ / Having Childcare Support at Conferences
nobu09
1
440
Featured
See All Featured
How to Ace a Technical Interview
jacobian
280
24k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
How to train your dragon (web standard)
notwaldorf
96
6.3k
A better future with KSS
kneath
239
18k
Unsuck your backbone
ammeep
671
58k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
Navigating Team Friction
lara
189
15k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
Building Applications with DynamoDB
mza
96
6.7k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
2.7k
Docker and Python
trallard
46
3.6k
Thoughts on Productivity
jonyablonski
70
4.9k
Transcript
)PXUPVTF"NB[PO3FLPHOJUJPO JO8PSE1SFTT CZNU!+"846(,PCF
"CPVU.F /BNFɿ,B[VUP5BLFTIJUB ɹ+PCɿ'SFFMBODF1SPHSBNNFS ɹ-JWFɿ,PCF.JZBLPKJNB
*`N+PJOUP 8PSE#FODI,PCF "TBPOFPG0SHBOJ[FS +"846(,PCF "TBPOFPG$PSF.FNCFS
5"-,"#065
.BSLFU1MBDF 'PS73$POUFOUT JT
/086/%&3 %&7&-01.&/5
8IZ6TF "NB[PO3FLPHOJUJPO .BLFJUFBTJFSGPSDVTUPNFST UPpOEUIFJNBHFTCZUBHT #VU *UJTIBSEUPDIFDL BMMUIFVQMPBEFEJNBHFT
LJOETPG"1* 'BDF 0CKFDU4DFOF $FMFCSJUZ
"NB[PO3FLPHOJUJPO "1*T ɹ$PNQBSF'BDFT ɹ%FMFUF'BDFT ɹ%FUFDU'BDFT ɹ*OEFY'BDFT ɹ-JTU'BDFT ɹ4FBSDI'BDFT ɹ4FBSDI'BDFT#Z*NBHF 'BDF
*NBHFGSPNIUUQTBXTBNB[PODPNSFLPHOJUJPO
"NB[PO3FLPHOJUJPO "1*T ɹ$SFBUF$PMMFDUJPO ɹ%FMFUF$PMMFDUJPO ɹ-JTU$PMMFDUJPOT ɹ%FUFDU-BCFMT ɹ%FUFDU.PEFSBUJPO-BCFMT 0CKFDUBOE4DFOF *NBHFGSPNIUUQTBXTBNB[PODPNSFLPHOJUJPO
"NB[PO3FLPHOJUJPO "1*T ɹ(FU$FMFCSJUZ*OGP ɹ3FDPHOJ[F$FMFCSJUJFT $FMFCSJUZ *NBHFGSPNIUUQTBXTBNB[PODPNSFLPHOJUJPO
%FUFDU-BCFMT *NBHFGSPNIUUQTBXTBNB[PODPNSFLPHOJUJPO
813FLPHOJ
%&.0
5IBOL:PV