Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2022-01-29 KServe概要@機械学習の社会実装勉強会
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Naka Masato
January 29, 2022
Technology
0
1k
2022-01-29 KServe概要@機械学習の社会実装勉強会
1. KServe概要
2. KServeのコンポーネント
3. KServeのアーキテクチャ
4. QuickStartの紹介
5. SklearnServerの仕組み紹介
Naka Masato
January 29, 2022
Tweet
Share
More Decks by Naka Masato
See All by Naka Masato
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.5k
2025-10-25 AIコーディングで開発した業務報告書自動生成アプリ
nakamasato
0
97
2025-07-27 Dev Containerで安全に Claude Codeを使う
nakamasato
0
280
2025-01-26 Platform EngineeringがあればSREはいらない!? 新時代のSREに求められる役割とは@SREKaigi 2025
nakamasato
0
73
2025-01-25 Devin.aiを使ってみた使用感@機械学習社会実装勉強会第43回
nakamasato
0
520
2024-07-11 Mercari Hallo 立ち上げ時のSRE
nakamasato
2
630
2024-07-03 Eliminating toil with LLM
nakamasato
1
270
2024-05-25LangChain Agentの仕組み@機械学習社会実装勉強会第35回
nakamasato
1
380
2022-06-18 Ray Trainの紹介@機械学習の社会実装勉強会第12回
nakamasato
0
270
Other Decks in Technology
See All in Technology
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
170
Why Organizations Fail: ノーベル経済学賞「国家はなぜ衰退するのか」から考えるアジャイル組織論
kawaguti
PRO
1
220
猫でもわかるKiro CLI(セキュリティ編)
kentapapa
0
130
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
390
配列に見る bash と zsh の違い
kazzpapa3
3
170
ランサムウェア対策としてのpnpm導入のススメ
ishikawa_satoru
0
230
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.6k
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
今日から始めるAmazon Bedrock AgentCore
har1101
4
420
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
130
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
120
Featured
See All Featured
Everyday Curiosity
cassininazir
0
130
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
80
Become a Pro
speakerdeck
PRO
31
5.8k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
240
Fireside Chat
paigeccino
41
3.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Done Done
chrislema
186
16k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
1
1.9k
Marketing to machines
jonoalderson
1
4.7k
Automating Front-end Workflow
addyosmani
1371
200k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Transcript
KServe概要 2022/01/29 Naka Masato
自己紹介 名前 那珂将人 経歴 • アルゴリズムエンジニアとしてレコメンドエンジン開発 • インフラ基盤整備 GitHub: https://github.com/nakamasato
Twitter: https://twitter.com/gymnstcs
コンテンツ • KServe 概要 • KServe アーキテクチャ • QuickStart •
SKlearnServer の仕組みの紹介
KServeとは ML model を本番環境へのデプロイと監視に関するチャレンジを解消するために作られ たモデル推論プラットフォーム Highly scalable and standards based
Model Inference Platform on Kubernetes for Trusted API.
KServeの特徴 1. Kubernetes の CustomResourceDefinition を 使ってモデルのサービングを管理 2. Kubernetes の機能を駆使して
ML モデルデ プロイ・管理の問題を解決 a. デプロイ b. モニタリング c. スケール 3. さまざまな ML ライブラリのモデルをサポート 🔺複雑に見えて、初心者にはとっつきにくい ! https://kserve.github.io/website/master/
1. KServe: CRD によってサービングしたいモデルを記述して作成する 2. Knative: オートスケーリング、バージョン管理、 Routing など全部やってくれるパック 3.
Istio: Microservices の可観測性、トラッフィク管理、セキュリティをコード変更なしで実 現 4. Cert Manager: TLS の certificate を管理 KServeで使われているコンポーネント KServce Knative Istio Cert Manager Serving するもの を定義 残りは、いろんなコンポーネントがうまく Deploy 管理、トラフィック管理、スケー リング、モニタリング、セキュリティなどをやってくれる Pod gateway
Control Planeのアーキテクチャ https://kserve.github.io/website/master/modelserving/control_plane/ 超複雑!
Control Planeのアーキテクチャ https://kserve.github.io/website/master/modelserving/control_plane/ 2. KServing の Controller が Knative を
通じて Deployment を作成 3. Pod が Deployment によって作成さ れます 4. AI app からのトラフィックは Transformer → Predictor 1. CustomResource の InferenceService を作成
QuickStart Prerequisite 1. Kubernetes Cluster Install Create InferenceService Check curl
-s "https://raw.githubusercontent.com/kserve/kserve/release-0.7/hack/quick_install.sh" | bash kubectl create ns kserve-test kubectl apply -f sklearn-inference-service.yaml -n kserve-test https://kserve.github.io/website/master/get_started/ curl -H "Host: ${SERVICE_HOSTNAME}" http://$INGRESS_HOST:$INGRESS_PORT/v1/models/sklearn-iris:predict -d @./data/iris-input.json
SKLearn Serverについて scikit-learn server は、 serving Scikit-learn models の実装になります https://github.com/kserve/kserve/tree/master/python/sklearnserver
sklearnserver というのが実装してあり、ローカルや s3 にある sklearn model を指定してサー ビング https://github.com/kserve/kserve/blob/master/python/sklearnserver/sklearnserver/__main__.py
SKLearn Serverについて SKLearnModel には 以下のメソッドが実装されている 1. load 2. predict
SKLearn Serverについて KServe で動かした QuickStart は、こちらがコンテナで動いていた ローカルで動かす場合は、以下のようにできる 1. モデルのファイルを準備 2.
sklearnserver を起動 3. client からアクセス python -m sklearnserver --model_dir ./ --model_name svm
まとめ 1. KServe を紹介 2. KServe の各コンポーネントの大まかな役割を紹介 3. KServe の
QuickStart を紹介 4. KServe の SKlearn Server がどのように作られているかを紹介