Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
I like sushi
Search
Naoya Ito
September 17, 2015
Technology
15
11k
I like sushi
すしルート#2 でのLT資料です
Naoya Ito
September 17, 2015
Tweet
Share
More Decks by Naoya Ito
See All by Naoya Ito
Haskell でアルゴリズムを抽象化する / 関数型言語で競技プログラミング
naoya
21
6.9k
Functional TypeScript
naoya
17
6.5k
TypeScript 関数型スタイルでバックエンド開発のリアル
naoya
75
36k
シェルの履歴とイクンリメンタル検索を使う
naoya
16
6.4k
20230227-engineer-type-talk.pdf
naoya
91
78k
関数型プログラミングと型システムのメンタルモデル
naoya
63
110k
TypeScript による GraphQL バックエンド開発
naoya
29
36k
フロントエンドのパラダイムを参考にバックエンド開発を再考する / TypeScript による GraphQL バックエンド開発
naoya
67
24k
「問題から目を背けず取り組む」 一休の開発チームが6年間で学んだこと
naoya
144
60k
Other Decks in Technology
See All in Technology
ローカルLLM基礎知識 / local LLM basics 2025
kishida
24
9.8k
その意思決定、まだ続けるんですか? ~痛みを超えて未来を作る、AI時代の撤退とピボットの技術~
applism118
42
24k
[続・営業向け 誰でも話せるOCI セールストーク] AWSよりOCIの優位性が分からない編(2025年11月21日開催)
oracle4engineer
PRO
1
140
【ASW21-02】STAMP/CAST分析における生成AIの支援 ~羽田空港航空機衝突事故を題材として (Support of Generative AI in STAMP/CAST Analysis - A Case Study Based on the Haneda Airport Aircraft Accident -)
hianraku9498
1
240
DDD x Microservice Architecture : Findy Architecture Conf 2025
syobochim
13
5.9k
AI エージェントを評価するための温故知新と Spec Driven Evaluation
icoxfog417
PRO
2
900
入社したばかりでもできる、 アクセシビリティ改善の第一歩
unachang113
2
360
巨大モノリスのリプレイス──機能整理とハイブリッドアーキテクチャで挑んだ再構築戦略
zozotech
PRO
0
370
Building AI Applications with Java, LLMs, and Spring AI
thomasvitale
1
260
レガシーシステム刷新における TypeSpec スキーマ駆動開発のすゝめ
tsukuha
4
790
GitHub を組織的に使いこなすために ソニーが実践した全社展開のプラクティス
sony
6
3.7k
AWS re:Invent 2025 で頻出の 生成 AI サービスをおさらい
komakichi
3
240
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
690
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Being A Developer After 40
akosma
91
590k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
RailsConf 2023
tenderlove
30
1.3k
Designing Experiences People Love
moore
142
24k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Transcript
*MJLFTVTIJ /BPZB*UP ,BJ[FO1MBUGPSN *OD
h"p://tenshoku.mynavi.jp/it-‐engineer/knowhow/naoya_sushi/13
͢͠
None
ߴ͍
ߴ͍͓ۚΛग़͢ͳΒ ྑ͍͓ళʹߦ͖͍ͨ
৯˓ά
ܦݧతʹ • ۜ࠲ߴධՁͷ͓ళ͕ଟ͍ͳɺͱ͔ • ܙൺणͷߴ͍ళ͕গͳ͍ͳɺͱ͔ • ߴ͍͓ళߴͦ͏ɺͱ͔ • ͜ͷՁ֨Ͱ͜ͷͷ͓ళ͓ಘͩɺͱ͔
ݟ͑ΔԽ͍ͨ͠
ݟ͑ΔԽ • σʔλΛͬͯݟ͑ΔԽ͍ͨ͠ • "1*ͳ͍ • "1*͕ͳ͍ͳΒͿͬ͜͵͚ৗࣝͷൣғ Ͱਓ༷ͷΞΫηεΛࣗಈԽ͢Εྑ͍ ͡Όͳ͍ –
ౖΒΕͨΒ͝ΊΜͳ͍͞ŋŋŋ
໘ͳ͜ͱ ▪「銀座駅」「鮨」の検索結果のURL h"p://tabelog.com/tokyo/A1301/A130101/R3368/rstLst/sushi/?SrtT=rt&sk=鮨 &svd=20150916&svt=1900&svps=2&LstCos=0&LstCosT=0&RdoCosTp=2&LstSitu=0&LstR ev=0&ChkCoupon=0&yahoo_ppc=0&ChkCampaign=0&Srt=D&sort_mode=1 ʮᲔʯೖͬͯΔ͚Ͳʮۜ ࠲ʯ͕ೖͬͯͳ͍
Ͳ͏Ҭ໊ͷΫΤϦΛ֬ఆ͠ ͨͱ͜ΖͰಈతʹҬใ ʹมͯ͠ΫΤϦͯ͠ΔΆ͍
୯७ͳ)551(&5Ͱ ͩΊ͔
None
/JHIUNBSF • /PEFKTϞδϡʔϧ • ϔουϨεϒϥβͷϋΠϨϕϧ"1*Λఏڙ – 1IBOUPN+4 – &MFDUSPO •
ϒϥβͷڍಈΛࣗಈԽ • $BTQFS+4ΑΓ͞Βʹએݴతʹॻ͚Δ • ԿͰͦΜͳ໊લ – 1IBOUPN ༓ྶ ˠ$BTQFSˠ/JHIUNBSF ͩͱࢥ͏
/JHIUNBSF&YBNQMF var Nightmare = require('nightmare'); yield Nightmare()
.goto('http://yahoo.com') .type('input[title="Search"]', 'github nightmare') .click('.searchsubmit');
ॾʑ • WͰͳ͘Wͬͨ – &MFDUSPOϕʔεʹมΘ͕ͬͨػೳ͕গ͠མͪͯΔ • useragent()ͳͲͷ"1*͕ফ͑ͨ • σόοάग़ྗͷใ͕গͳ͍ •
ϒϥβͷݴޠใΛ੍ޚͰ͖ͳ͍ – "1*গ͠ҧ͏ͷͰҙ • yieldͰॻ͚ΔͷҎ߱
ਓ͕ೖྗ͢Δͱ͖ͷϑ ϩʔΛ࠶ݱ
)5.-ͷύʔε DIFFSJPͰ
ΤΫηϧ • Ҭ͝ͱʹಘͨσʔλΛΤΫηϧ – ۜ࠲ɺຊɺܙൺणɺஙŋŋŋ • ͦΕͧΕళฮ͘Β͍ – είΞ – Ձ֨ଳ • Ձ֨ͱείΞͷࢄਤΛ࡞Δ
ۜ࠲ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000
ܙൺण 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000
݁ߏΘ͔Δ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 ܙൺणʹߴՁ֨ଳͷධ Ձͷߴ͍͓ళ͕ͳ͍ ۜ࠲ධՁͷߴ͍ߴڃళ ͕ͻ͠Ί͍͍ͯΔ ʮܙൺणߴڃҿ৯ళີूଳͷׂʹྑ͍͓Ე͞Μগͳ͍ʯŋŋŋͱ͍͏ᷚຊ͔ ͦͦ͢͠͞Μগͳ͍
ຊ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000
ங 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000
͔Δ͘ߟ
ۜ࠲ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 ܦݧతʹ͘Β͍͋Εϋζ Ϩগͳ͍ͷͰͦ͜Λᮢʹ͠ ͯΈΔ
ۜ࠲ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 ίεύͷྑ͍ళ͋Δ ་٢ຕҎ্ͷߴڃళ ͳΒ͜ͷ͋ͨΓ͕ೲಘ ײ͕ߴͦ͏ ४ߴڃళͰຬͷߴ ͦ͏ͳ͓ళ ඞͣ͠ߴՁ֨ͳΒධ Ձ͕ྑ͍Θ͚Ͱͳ͍
ຊ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 ۜ࠲ͱࣅ͍ͯΔ ۜ࠲ʹൺֱͯ͜͠ͷՁ ֨ଳͷߴධՁళ͕গͳ ͍ Ձ֨ଳͰߴධՁ ͷళͳ͍
ங 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 Ձ֨ଳͷ͓ళ ີू͍ͯ͠Δ ૂ͍ ૂ͍
ײ • શൠతʹՁ֨ଳධՁ͕ौΊʹͳΔ – ҆ͯ͘͘Β͍ͳΒίεύྑ͍ͷͰ • ջ͕Թ͔͍ͳΒۜ࠲ຊ – ͨͩ͠ຊʹߦ͘ͳΒத్ආ͚Δ –
ۜ࠲ຊΑΓબࢶ • ࠷ߴڃՁ֨ଳͰͳͯ͘ྑ͍ళ͕݁ߏ͋Δ • ஙொͷنʹର͕ͯ͢͠͠ଟ༷ɻ • ܙൺण͢͠ʹ͔ͳ͍ – ͳ͓നۜߴྠඌ·Ͱߦ͘ͱ৭ʑ͓ళ͕͋Γ·͢ ˞͋͘·ͰείΞΛ৴͢ΔͳΒɻ͋·Γਅʹड͚ͳ͍Ͱ͍ͩ͘͞Ͷ
5IBOLT ͢͠Ώ͖ $ ͋ΘΏ͖ $$#:/$/%