Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
I like sushi
Search
Naoya Ito
September 17, 2015
Technology
15
11k
I like sushi
すしルート#2 でのLT資料です
Naoya Ito
September 17, 2015
Tweet
Share
More Decks by Naoya Ito
See All by Naoya Ito
Haskell でアルゴリズムを抽象化する / 関数型言語で競技プログラミング
naoya
19
6k
Functional TypeScript
naoya
15
6.3k
TypeScript 関数型スタイルでバックエンド開発のリアル
naoya
72
35k
シェルの履歴とイクンリメンタル検索を使う
naoya
8
3.2k
20230227-engineer-type-talk.pdf
naoya
90
76k
関数型プログラミングと型システムのメンタルモデル
naoya
62
100k
TypeScript による GraphQL バックエンド開発
naoya
29
35k
フロントエンドのパラダイムを参考にバックエンド開発を再考する / TypeScript による GraphQL バックエンド開発
naoya
67
24k
「問題から目を背けず取り組む」 一休の開発チームが6年間で学んだこと
naoya
144
60k
Other Decks in Technology
See All in Technology
結局QUICで通信は速くなるの?
kota_yata
9
7.5k
Amazon Inspector コードセキュリティで手軽に実現するシフトレフト
maimyyym
0
160
生成AI利用プログラミング:誰でもプログラムが書けると 世の中どうなる?/opencampus202508
okana2ki
0
180
開発と脆弱性と脆弱性診断についての話
su3158
1
1k
キャリアを支え組織力を高める「多層型ふりかえり」 / 20250821 Kazuki Mori
shift_evolve
PRO
2
270
GitHub Copilot coding agent を推したい / AIDD Nagoya #1
tnir
0
1k
Autonomous Database Serverless 技術詳細 / adb-s_technical_detail_jp
oracle4engineer
PRO
18
52k
AIと描く、未来のBacklog 〜プロジェクト管理の次の10年を想像し、創造するセッション〜
hrm_o25
0
120
Android Studio の 新しいAI機能を試してみよう / Try out the new AI features in Android Studio
yanzm
0
200
いま、あらためて考えてみるアカウント管理 with IaC / Account management with IaC
kohbis
2
580
AIエージェントの開発に必須な「コンテキスト・エンジニアリング」とは何か──プロンプト・エンジニアリングとの違いを手がかりに考える
masayamoriofficial
0
200
[OCI Technical Deep Dive] OCIで生成AIを活用するためのソリューション解説(2025年8月5日開催)
oracle4engineer
PRO
0
130
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.5k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
GitHub's CSS Performance
jonrohan
1031
460k
How to Ace a Technical Interview
jacobian
279
23k
Designing for Performance
lara
610
69k
GraphQLとの向き合い方2022年版
quramy
49
14k
Music & Morning Musume
bryan
46
6.7k
How STYLIGHT went responsive
nonsquared
100
5.7k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Transcript
*MJLFTVTIJ /BPZB*UP ,BJ[FO1MBUGPSN *OD
h"p://tenshoku.mynavi.jp/it-‐engineer/knowhow/naoya_sushi/13
͢͠
None
ߴ͍
ߴ͍͓ۚΛग़͢ͳΒ ྑ͍͓ళʹߦ͖͍ͨ
৯˓ά
ܦݧతʹ • ۜ࠲ߴධՁͷ͓ళ͕ଟ͍ͳɺͱ͔ • ܙൺणͷߴ͍ళ͕গͳ͍ͳɺͱ͔ • ߴ͍͓ళߴͦ͏ɺͱ͔ • ͜ͷՁ֨Ͱ͜ͷͷ͓ళ͓ಘͩɺͱ͔
ݟ͑ΔԽ͍ͨ͠
ݟ͑ΔԽ • σʔλΛͬͯݟ͑ΔԽ͍ͨ͠ • "1*ͳ͍ • "1*͕ͳ͍ͳΒͿͬ͜͵͚ৗࣝͷൣғ Ͱਓ༷ͷΞΫηεΛࣗಈԽ͢Εྑ͍ ͡Όͳ͍ –
ౖΒΕͨΒ͝ΊΜͳ͍͞ŋŋŋ
໘ͳ͜ͱ ▪「銀座駅」「鮨」の検索結果のURL h"p://tabelog.com/tokyo/A1301/A130101/R3368/rstLst/sushi/?SrtT=rt&sk=鮨 &svd=20150916&svt=1900&svps=2&LstCos=0&LstCosT=0&RdoCosTp=2&LstSitu=0&LstR ev=0&ChkCoupon=0&yahoo_ppc=0&ChkCampaign=0&Srt=D&sort_mode=1 ʮᲔʯೖͬͯΔ͚Ͳʮۜ ࠲ʯ͕ೖͬͯͳ͍
Ͳ͏Ҭ໊ͷΫΤϦΛ֬ఆ͠ ͨͱ͜ΖͰಈతʹҬใ ʹมͯ͠ΫΤϦͯ͠ΔΆ͍
୯७ͳ)551(&5Ͱ ͩΊ͔
None
/JHIUNBSF • /PEFKTϞδϡʔϧ • ϔουϨεϒϥβͷϋΠϨϕϧ"1*Λఏڙ – 1IBOUPN+4 – &MFDUSPO •
ϒϥβͷڍಈΛࣗಈԽ • $BTQFS+4ΑΓ͞Βʹએݴతʹॻ͚Δ • ԿͰͦΜͳ໊લ – 1IBOUPN ༓ྶ ˠ$BTQFSˠ/JHIUNBSF ͩͱࢥ͏
/JHIUNBSF&YBNQMF var Nightmare = require('nightmare'); yield Nightmare()
.goto('http://yahoo.com') .type('input[title="Search"]', 'github nightmare') .click('.searchsubmit');
ॾʑ • WͰͳ͘Wͬͨ – &MFDUSPOϕʔεʹมΘ͕ͬͨػೳ͕গ͠མͪͯΔ • useragent()ͳͲͷ"1*͕ফ͑ͨ • σόοάग़ྗͷใ͕গͳ͍ •
ϒϥβͷݴޠใΛ੍ޚͰ͖ͳ͍ – "1*গ͠ҧ͏ͷͰҙ • yieldͰॻ͚ΔͷҎ߱
ਓ͕ೖྗ͢Δͱ͖ͷϑ ϩʔΛ࠶ݱ
)5.-ͷύʔε DIFFSJPͰ
ΤΫηϧ • Ҭ͝ͱʹಘͨσʔλΛΤΫηϧ – ۜ࠲ɺຊɺܙൺणɺஙŋŋŋ • ͦΕͧΕళฮ͘Β͍ – είΞ – Ձ֨ଳ • Ձ֨ͱείΞͷࢄਤΛ࡞Δ
ۜ࠲ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000
ܙൺण 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000
݁ߏΘ͔Δ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 ܙൺणʹߴՁ֨ଳͷධ Ձͷߴ͍͓ళ͕ͳ͍ ۜ࠲ධՁͷߴ͍ߴڃళ ͕ͻ͠Ί͍͍ͯΔ ʮܙൺणߴڃҿ৯ళີूଳͷׂʹྑ͍͓Ე͞Μগͳ͍ʯŋŋŋͱ͍͏ᷚຊ͔ ͦͦ͢͠͞Μগͳ͍
ຊ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000
ங 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000
͔Δ͘ߟ
ۜ࠲ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 ܦݧతʹ͘Β͍͋Εϋζ Ϩগͳ͍ͷͰͦ͜Λᮢʹ͠ ͯΈΔ
ۜ࠲ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 ίεύͷྑ͍ళ͋Δ ་٢ຕҎ্ͷߴڃళ ͳΒ͜ͷ͋ͨΓ͕ೲಘ ײ͕ߴͦ͏ ४ߴڃళͰຬͷߴ ͦ͏ͳ͓ళ ඞͣ͠ߴՁ֨ͳΒධ Ձ͕ྑ͍Θ͚Ͱͳ͍
ຊ 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 ۜ࠲ͱࣅ͍ͯΔ ۜ࠲ʹൺֱͯ͜͠ͷՁ ֨ଳͷߴධՁళ͕গͳ ͍ Ձ֨ଳͰߴධՁ ͷళͳ͍
ங 2.9 3.1 3.3 3.5 3.7
3.9 4.1 4.3 4.5 0 5,000 10,000 15,000 20,000 25,000 Ձ֨ଳͷ͓ళ ີू͍ͯ͠Δ ૂ͍ ૂ͍
ײ • શൠతʹՁ֨ଳධՁ͕ौΊʹͳΔ – ҆ͯ͘͘Β͍ͳΒίεύྑ͍ͷͰ • ջ͕Թ͔͍ͳΒۜ࠲ຊ – ͨͩ͠ຊʹߦ͘ͳΒத్ආ͚Δ –
ۜ࠲ຊΑΓબࢶ • ࠷ߴڃՁ֨ଳͰͳͯ͘ྑ͍ళ͕݁ߏ͋Δ • ஙொͷنʹର͕ͯ͢͠͠ଟ༷ɻ • ܙൺण͢͠ʹ͔ͳ͍ – ͳ͓നۜߴྠඌ·Ͱߦ͘ͱ৭ʑ͓ళ͕͋Γ·͢ ˞͋͘·ͰείΞΛ৴͢ΔͳΒɻ͋·Γਅʹड͚ͳ͍Ͱ͍ͩ͘͞Ͷ
5IBOLT ͢͠Ώ͖ $ ͋ΘΏ͖ $$#:/$/%