Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
Search
Nealle
August 19, 2025
Programming
0
2.2k
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
2025/8/20
https://pug.connpass.com/event/364357/
#p_UG 東京:夏のデータ活用大共有会 データ活用の第一歩からAIにやさしいデータ基盤までお届け!
Nealle
August 19, 2025
Tweet
Share
More Decks by Nealle
See All by Nealle
Pythonに漸進的に型をつける
nealle
1
140
品質ワークショップをやってみた
nealle
0
830
DevHRに全部賭けろ
nealle
0
180
AI OCR API on Lambdaを Datadogで可視化してみた
nealle
0
330
生成AI、実際どう? - ニーリーの場合
nealle
0
960
“いい感じ“な定量評価を求めて - Four Keysとアウトカムの間の探求 -
nealle
4
16k
ニーリーにおけるプロダクトエンジニア
nealle
0
1.3k
プロダクト志向なエンジニアがもう一歩先の価値を目指すために意識したこと
nealle
0
520
事業KPIを基に価値の解像度を上げる
nealle
0
530
Other Decks in Programming
See All in Programming
AI 駆動開発におけるコミュニティと AWS CDK の価値
konokenj
5
310
Developer Joy - The New Paradigm
hollycummins
1
400
モテるデスク環境
mozumasu
3
1.4k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
640
オープンソースソフトウェアへの解像度🔬
utam0k
18
3.2k
実践Claude Code:20の失敗から学ぶAIペアプログラミング
takedatakashi
18
9.3k
Vue 3.6 時代のリアクティビティ最前線 〜Vapor/alien-signals の実践とパフォーマンス最適化〜
hiranuma
2
350
三者三様 宣言的UI
kkagurazaka
0
320
Claude Agent SDK を使ってみよう
hyshu
0
1.5k
Webサーバーサイド言語としてのRustについて
kouyuume
1
5k
Inside of Swift Export
giginet
PRO
1
270
AsyncSequenceとAsyncStreamのプロポーザルを全部読む!!
s_shimotori
1
220
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
331
21k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
220
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Gamification - CAS2011
davidbonilla
81
5.5k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Transcript
TROCCO×dbtで実現する 人にもAIにもやさしいデータ基盤 2025.08.20 #p_UG 東京:夏のデータ活用大共有会 株式会社ニーリー 上田 健太郎 NEALLE 1
2022年8月にニーリーに入社。 Analyticsチームの1人目のメンバーとなり、 「事業や経営の意思決定を支援するデータ分析結果の創出」をミッションに、 データ基盤構築から分析まで幅広く対応。 2 自己紹介 株式会社ニーリー Analyticsチーム エンジニア 上田
健太郎
3 プロダクト紹介
4 今日のお話 • 分析の属人化防止 (イネーブリング) のために、TROCCO×dbtでデータマートを整備した • 結果、属人化防止だけでなく、AI活用にも繋がった = 人にもAIにもやさしいデータ基盤
• 同時に、人 (Analytics Eng.) が注力すべきポイントも見えてきた
5 なぜTROCCO? : 2023年10月頃 • より事業貢献に近い領域 (データマート整備や分析) に注力したかった • データソース毎にETLを自前実装するのはマンパワー的にも困難
◦ チーム発足当初は1名体制 (現在は5名) • テーブルやカラムの追加削除も多く、独自実装での検知・追従は非現実的
6 なぜTROCCO? : 2023年10月頃 • より事業貢献に近い領域 (データマート整備や分析) に注力したかった • データソース毎にETLを自前実装するのはマンパワー的にも困難
◦ チーム発足当初は1名体制 (現在は5名) • テーブルやカラムの追加削除も多く、独自実装での検知・追従は非現実的 ※ BQに直接転送しているデータソースは省略 (GAなど)
▼導入効果 • テーブル・カラム自動追従や豊富なコネクタにより ETLが楽になり、マート整備・分析に注力できた • サポートが充実しているのも大変ありがたかった 7 なぜTROCCO? : 2023年10月頃
• より事業貢献に近い領域 (データマート整備や分析) に注力したかった • データソース毎にETLを自前実装するのはマンパワー的にも困難 ◦ チーム発足当初は1名体制 (現在は5名) • テーブルやカラムの追加削除も多く、独自実装での検知・追従は非現実的 ※ BQに直接転送しているデータソースは省略 (GAなど)
8 なぜdbt?: 2025年3月頃 • 2024年の中盤からデータ分析の依頼が増加し続け、データ活用のイネーブリングが急務に。 同時に分析用に加工済みのデータマートの重要性が増した • dbtはデータマート定義はもちろん、データカタログの出力も可能 • TROCCOはdbt連携
(実行) が可能なので、渡りに船だった
9 なぜdbt?: 2025年3月頃 • 2024年の中盤からデータ分析の依頼が増加し続け、データ活用のイネーブリングが急務に。 同時に分析用に加工済みのデータマートの重要性が増した • dbtはデータマート定義はもちろん、データカタログの出力も可能 • TROCCOはdbt連携
(実行) が可能なので、渡りに船だった
▼導入効果 • メンテフリーのdbt実行環境が手に入った • マート&カタログにより分析クエリ作成に必要な知識が 大幅に低減。Bizメンバーの分析参画が増加 • dbt testなどの諸機能によりデータの信頼性・整備性が向上 10
なぜdbt?: 2025年3月頃 • 2024年の中盤からデータ分析の依頼が増加し続け、データ活用のイネーブリングが急務に。 同時に分析用に加工済みのデータマートの重要性が増した • dbtはデータマート定義はもちろん、データカタログの出力も可能 • TROCCOはdbt連携 (実行) が可能なので、渡りに船だった
11 なぜAI?: 2025年7月頃 • 元々、属人化防止のために分析SQLには丁寧にコメントをつけていた ◦ 作成経緯、1行の粒度、CTE単位の処理説明、編集履歴など • マート&カタログだけでは一部のbizメンバーの分析イネーブリングに留まっていた •
手元の生成AIにSQLとdbtモデルを読ませると、結構な精度でSQLを作成できることが判明 • そんな中、社内にAI担当チームも発足。「AI Analytics Chatbot」を作ることに
12 なぜAI?: 2025年7月頃 • 元々、属人化防止のために分析SQLには丁寧にコメントをつけていた ◦ 作成経緯、1行の粒度、CTE単位の処理説明、編集履歴など • マート&カタログだけでは一部のbizメンバーの分析イネーブリングに留まっていた •
手元の生成AIにSQLとdbtモデルを読ませると、結構な精度でSQLを作成できることが判明 • そんな中、社内にAI担当チームも発足。「AI Analytics Chatbot」を作ることに
13 なぜAI?: 2025年7月頃 • 元々、属人化防止のために分析SQLには丁寧にコメントをつけていた ◦ 作成経緯、1行の粒度、CTE単位の処理説明、編集履歴など • マート&カタログだけでは一部のbizメンバーの分析イネーブリングに留まっていた •
手元の生成AIにSQLとdbtモデルを読ませると、結構な精度でSQLを作成できることが判明 • そんな中、社内にAI担当チームも発足。「AI Analytics Chatbot」を作ることに ▼導入効果 • AnalyticsチームのSQL開発は圧倒的に効率化 • SQLコメントとdbt定義のマート群はAIにも 解釈しやすかったようで、初版で使える精度を実現 • Bizメンバーへの効果は計測中 (公開後間もないため)
14 見えてきたポイント: 人にもAIにも優しい基盤を実現するには? No. ポイント アクション 効果 1 徹底的なドキュメンテーション ・dbtモデルでのdescription記載の強制
・分析用SQLへのコメント記載の徹底 ・分析の属人化防止 (イネーブリング) ・AI回答精度の向上 2 分析用データマートの充実化 ・複雑なjoinやcase式、Biz指標の定義を隠蔽 3 利用者とのコミュニケーション ・定期的な分析・マート需要のヒアリング ・実用性の高い データマートの企画 4 マネージドな仕組みの活用 ・TROCCO×dbt でETL・データ検証に 要する時間を削減 ・上記対応の時間の捻出 1~4は同時に、人 (Analytics Eng.) が注力すべきポイント = AIに代替されにくいポイント でもあると思う
ニーリーではプロダクトエンジニア、 その他のポジションも積極採用中です! https://jobs.nealle.com/ We are hiring!!!