Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DRL 組み合わせ最適化
Search
newzy
November 24, 2021
Research
8
90
DRL 組み合わせ最適化
newzy
November 24, 2021
Tweet
Share
Other Decks in Research
See All in Research
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3.1k
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
620
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
280
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
130
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
19k
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
910
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
230
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
180
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
860
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
340
近似動的計画入門
mickey_kubo
4
1k
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
120
Featured
See All Featured
A better future with KSS
kneath
239
17k
How to Ace a Technical Interview
jacobian
280
23k
Become a Pro
speakerdeck
PRO
29
5.5k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
840
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
How STYLIGHT went responsive
nonsquared
100
5.8k
How to train your dragon (web standard)
notwaldorf
96
6.3k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
It's Worth the Effort
3n
187
28k
The Invisible Side of Design
smashingmag
301
51k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
Transcript
POMO: Policy Optimization with Multiple Optima for Reinforcement Learning Kwon,
Yeong-Dae, et al. NeurIPS, 2020, vol.33
ཁ •Έ߹Θͤ࠷దԽʹ͓͚ΔɼਂڧԽֶश ͰͷFOEUPFOEͷۙࣅղ๏ɽ •طଘͷਂڧԽֶशख๏ͱൺֱͯ͠ɼ ܭࢉ࣌ؒɾਫ਼ͱʹେ͖͘վળͨ͠ •८ճηʔϧεϚϯͳͲͰݕূɽ 2/26
ಋೖ
Έ߹Θͤ࠷దԽ •८ճηʔϧεϚϯૹܭըɼφοϓβοΫ ͳͲʹද͞ΕΔΑ͏ͳ࠷దͳΈ߹ΘͤΛٻΊΔɽ 4/26 精度 計算時間 厳密解法 最適 遅い 近似解法
最適に 近い 早い https://onl.tw/vzkASMX
ڧԽֶशʢ3FJOGPSDFNFOU-FBSOJOH3-ʣ •3-ɿஞ࣍తͳҙࢥܾఆΛղ͘ख๏ɽ ྦྷੵใु͕࠷େʹͳΔΑ͏ͳํࡦΛݟ͚ͭΔ͜ͱ͕తɽ 5/26 ઃఆͱͯ͠ɼঢ়ଶू߹ɼߦಈू߹ɼใुؔΛ ઃఆ͢Δඞཁ͕͋Δɽ https://onl.tw/98fQVvW
ํࡦϕʔεͷ3&*/'03$& 6/26 •ํࡦ 𝜋 𝑠 ɿঢ়ଶ𝑠ʹ͓͚Δߦಈ𝑎Λग़ྗ͢Δؔ •𝜋! ɿύϥϝʔλ 𝜃ͰύϥϝʔλԽ͞Εͨํࡦ •ํࡦͷߋ৽ࣜɿ𝛼ֶशɼ𝐽
𝜋! తؔ 𝜃 ← 𝜃 + 𝛼∇! 𝐽 𝜋! •ํࡦޯͷࣜɿ𝔼ظɼ𝑅" ऩӹɼ𝑏 𝑠 ϕʔεϥΠϯ ∇! 𝐽 𝜋! = 𝔼#! ∇! log 𝜋! ⋅ 𝑅" − 𝑏 𝑠
ઌߦݚڀ
1PJOUFS/FUXPSLTʢʣ Έ߹Θͤ࠷దԽͰར༻͢ΔωοτϫʔΫ •ॏෳͳ͘બ͠ɼग़ྗύλʔϯྻΛੜ͢Δɽ •ೖྗใ͔Βಛநग़Λߦ͏FODPEFSͱɼFODPEFS ͷग़ྗΛར༻ͯ͑͠ͱͳΔܦ࿏Λग़ྗ͢ΔEFDPEFS͔ ΒͳΔɽ •FODPEFSͱEFDPEFSʹ-45.Λ༻ɽ 8/26
"UUFOUJPO .PEFMʢʣ 1PJOUFS/FUXPSLTͷվྑ൛ •1PJOUFS/FUXPSLTಉ༷ɼ&ODPEFSͱ%FDPEFSΛ༻͢Δ Ϟσϧɽ •-45.ഇࢭ͠ɼ.VMUJIFBE"UUFOUJPOΛ࠾༻ɽ 9/26
ख๏
ຊจͷख๏ͷΞΠσΞ 11/26 ࠷ॳͷߦಈɼޙͷΤʔδΣϯτͷߦಈʹେ͖͘ӨڹΛ༩͑Δɽ Έ߹Θͤ࠷దԽʹΑ͘ݟΒΕΔରশੑΛར༻ɽ
10.0 •3&*/'03$&XJUI#BTFMJOFɿయܕతͳํࡦޯϕʔεͷ 3-ΞϧΰϦζϜΛ༻ɽ •ෳͷҟͳΔ։࢝ߦಈΛࢦఆ͠ɼෳͷߦಈܥྻʢيಓʣ ΛಘΔɽ •ʻ45"35ʼτʔΫϯΛ༻͍ͳ͍ɽ 12/26 従来 POMO
10.0 ∇! 𝐽 𝜃 ≈ 1 𝑁 6 $%& '
𝑅 𝜏$ − 𝑏$ 𝑠 ∇! log 𝑝! 𝜏$ ∣ 𝑠 𝑤ℎ𝑒𝑟𝑒 𝑝! 𝝉$ ∣ 𝑠 ≡ @ "%( ) 𝑝! 𝑎" $ ∣ 𝑠, 𝑎&:"+& $ يಓ 𝝉$ = 𝑎& $ , 𝑎( $ , … , 𝑎) $ GPS 𝑖 = 1,2, … , 𝑁 ڞ༗ϕʔεϥΠϯ 𝑏$(𝑠) = 𝑏TIBSFE (𝑠) = 1 𝑁 6 ,%& ' 𝑅 𝝉, GPS 𝑖 = 1,2, … , 𝑁 13/26
܇࿅෦ͷٖࣅίʔυ 14/26
*OTUBODF"VHNFOUBUJPOɿਪख๏ •ը૾ॲཧͷσʔλΦʔάϝϯςʔγϣϯ͔Βணɽ •ࠓճ͏࠲ඪɼYͷ୯Ґਖ਼ํܗʢୈҰݶʣͷ ͷΛར༻ɽ 15/26 今回使う Instance Augmentation
ਪ෦ͷٖࣅίʔυ 16/26
࣮ݧ
࣮ݧ ࣮ݧ༰ •10.0Λ༻͍ͯɼҎԼͷΛղ͍ͨ݁ՌΛଞͷදతख๏ͱ ൺֱɽ ८ճηʔϧεϚϯ ༰ྔ੍͋Γͷૹܭը φοϓβοΫ
18/26
ֶशۂઢɿ८ճηʔϧεϚϯ 19/26 50地点 100地点
८ճηʔϧεϚϯʢ541ʣ 20/26
८ճηʔϧεϚϯʢ541ʣ 21/26
༰ྔ੍͋Γͷૹܭըʢ$731ʣ 22/26
φοϓβοΫʢ,1ʣ 23/26
࣮ݧͷ·ͱΊ •ҟͳΔઃఆͷͭͷΈ߹Θͤ࠷దԽʹରͯ͠ɼ ಉҰͷ܇࿅ख๏ͱ//ΞʔΩςΫνϟΛ༻͍ͯ༗ͳ݁ՌΛ ಘͨɽ •܇࿅ɾਪख๏ͱͯ͠ͷ10.0ɼਪख๏ͱͯ͠ͷ *OTUBODF"VHNFOUBUJPOͲͪΒޮՌతͳख๏Ͱ͋Δ͜ͱ Λ֬ೝͨ͠ɽ 24/26
·ͱΊ ຊจͰΈ߹Θͤ࠷దԽʹ͓͍ͯɼରশੑΛར༻ ͯ͠3-ͷαϯϓϧޮਫ਼ ਪ࣌ؒΛॖ͢Δख๏Λ հͨ͠ɽ 25/26
ࢀߟจݙ ,XPO :FPOH%BF FUBM10.01PMJDZ0QUJNJ[BUJPOXJUI .VMUJQMF0QUJNBGPS3FJOGPSDFNFOU-FBSOJOH "EWBODFTJO /FVSBM*OGPSNBUJPO1SPDFTTJOH4ZTUFNT
,PPM 8PVUFS )FSLF WBO)PPG BOE.BY8FMMJOH"UUFOUJPO -FBSOUP4PMWF3PVUJOH1SPCMFNT *OUFSOBUJPOBM$POGFSFODF PO-FBSOJOH3FQSFTFOUBUJPOT 7JOZBMT 0SJPM .FJSF 'PSUVOBUP BOE/BWEFFQ+BJUMZ1PJOUFS /FUXPSLT "EWBODFTJO/FVSBM*OGPSNBUJPO1SPDFTTJOH 4ZTUFNT 26/26