Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How Plumbr uses Kafka
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Nikita Salnikov-Tarnovski
February 04, 2018
Programming
0
100
How Plumbr uses Kafka
Nikita Salnikov-Tarnovski
February 04, 2018
Tweet
Share
More Decks by Nikita Salnikov-Tarnovski
See All by Nikita Salnikov-Tarnovski
Project clarity - random rant from an old engineer
nikem
0
93
Introduction to Druid
nikem
0
870
Deceived by monitoring
nikem
0
70
10% Happier
nikem
0
73
Where is my memory
nikem
0
470
Heap, off you go
nikem
0
1.2k
First steps in GC tuning
nikem
0
1.6k
I bet you have a memory leak
nikem
1
170
Plumbing Memory Leaks
nikem
1
150
Other Decks in Programming
See All in Programming
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
並行開発のためのコードレビュー
miyukiw
0
290
AI & Enginnering
codelynx
0
120
ノイジーネイバー問題を解決する 公平なキューイング
occhi
0
110
AIによる開発の民主化を支える コンテキスト管理のこれまでとこれから
mulyu
3
370
Claude Codeと2つの巻き戻し戦略 / Two Rewind Strategies with Claude Code
fruitriin
0
140
Patterns of Patterns
denyspoltorak
0
1.4k
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
650
SourceGeneratorのススメ
htkym
0
200
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
720
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
270
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
430
Featured
See All Featured
Odyssey Design
rkendrick25
PRO
1
500
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
The browser strikes back
jonoalderson
0
390
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
Transcript
Eating Kafka Nikita Salnikov-Tarnovski @iNikem
Intro to Kafka
What is Kafka • Distributed streaming platform • It lets
you publish and subscribe to streams of records • It lets you store streams of records in a fault-tolerant way.
What is Kafka • Kafka runs as a cluster on
one or more servers. • The Kafka cluster stores streams of records in categories called topics. • Each record consists of a key, a value, and a timestamp.
Four APIs http://kafka.apache.org/documentation/
Append log http://kafka.apache.org/documentation/
Brokers • Several brokers form a cluster • Coordinated with
Zookeeper • All partitions are distributed among brokers
Producers • Producer sends record to a topic • Based
on a key, partition is chosen • Leader broker is found • Wait for requested acks
Fast writes • Brokers cheat and don’t write to disk
• They write to disk cache • And let OS care about flushing to disk
Replication • Each topic can be replicated among brokers •
So for each partition there are X copies • Brokers just consume messages from leader
Consumer groups (c) Confluent
Consumer rebalance (c) Confluent
Commit • Consumer has to commit offsets he consumed •
You have to decide, when and how!
Delivery semantics • At least once • At most once
• Exactly once
Kafka Connect • Off-the-shelf solution to pipe data to or
from Kafka • E.g. DB, Elasticsearch, files, etc…
Kafka Streams • DSL and platform for writing data processing
streams • If you squint enough, very similar to Java8 streams and Fork-Join pool • But across multiple jvms and servers
Kafka in Plumbr
Kafka cluster • 5 brokers • 2x replication • 20T
data for last 90 days • Inflow ~125G per day
Data processing pipeline
Spring Cloud Stream • Greatly simplifies development of Kafka based
apps • Couple of annotations and data flows :)
Solving performance problems is hard. We don’t think it needs
to be. @JavaPlumbr/@iNikem http://plumbr.eu