Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Disentangled Representation Learning for Non-Pa...
Search
nizhny
November 02, 2019
Technology
0
1.1k
Disentangled Representation Learning for Non-Parallel Text Style Transfer
nizhny
November 02, 2019
Tweet
Share
More Decks by nizhny
See All by nizhny
0309-nlpaperchallenge-nlp5
nizhny
1
720
Other Decks in Technology
See All in Technology
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
190
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
220
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
360
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.8k
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
140
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
210
20260204_Midosuji_Tech
takuyay0ne
1
160
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
180
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
160
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
Featured
See All Featured
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
New Earth Scene 8
popppiees
1
1.5k
Google's AI Overviews - The New Search
badams
0
910
Mobile First: as difficult as doing things right
swwweet
225
10k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
Documentation Writing (for coders)
carmenintech
77
5.3k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
100
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Evolving SEO for Evolving Search Engines
ryanjones
0
130
Measuring & Analyzing Core Web Vitals
bluesmoon
9
760
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
150
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
Transcript
Disentangled Representation Learning for Non-Parallel Text Style Transfer ACL網羅的サーベイ報告会: Keito
Ishihara
自己紹介 • 石原慧人 • 筑波大B4 • Twitter: @nizhny_
論文概要 • NLPにおけるdisentanglingの研究 • 特にスタイル変換での利用を想定 • マルチタスク学習と敵対的学習を組 み合わせた手法を提案 タイトル雑日本語訳:教師なしテキストスタイル変換のための 解きほぐされた表現学習
スタイル変換とは In CV: 同じ物体の画風を操作するタスク (例) Gatys+(CVPR2016) In NLP: テキストの意味(コンテンツ)を維持したまま、それ以外の情報(スタイル)を操作 するタスク
(例) 私は猫です→我輩は猫である
「教師なし」テキストスタイル変換とは 文to文で変換を行うので教師ありスタイル変換 は翻訳系の手法がほぼそのまま使える 主な研究対象はペアがない場合 主流の手法 1. 入力文の特徴からコンテンツ成分を分離 2. スタイルを付与してデコード という手順で行う
Autoencoder AEで射影される中間表現を二つに分割し、それぞれの空間がス タイルとコンテンツを表現するよう補助損失を追加することで Disentanglementを行う
Style-Oriented Losses マルチタスク学習によりそれぞれの空間にその情報が含まれてい ることを、敵対的学習により余計な情報が含まれないことの保証 を行う Multi-Task Loss for Style: スタイル空間から元々のスタイルを
当てるマルチタスク損失 Adversarial Loss for Style: コンテンツ空間から元々のスタイ ルを当てられないような敵対的損失
Content-Oriented Losses Multi-Task Loss for Content: コンテンツ空間から元々のコンテ ンツを当てるマルチタスク損失 Adversarial Loss
for Content: スタイル空間から元々のコンテ ンツを当てられないような敵対的損失 ※NLPではコンテンツとは何かが明確に定まらないことが多い が、ここでは事前に構築した辞書に基づくコンテンツワードのBoW 表現としている
訓練&推論手順 訓練: 敵対的損失のためのそれぞれの Discriminatorの学習は個別に行い、それ以 外の部分は全て同時に学習を行う 推論: 「エンコーダで特徴空間に射影」→「コンテン ツ空間のベクトルと学習時の目的スタイル の平均を結合」→「デコード」
実験: Disentangling Latent Space
実験:Non-Parallel Text Style Transfer
評価手法 • STA: 変換後テキストがスタイル分類モデルにどの程度意図し たスタイルと分類されるか • CS: 変換元テキストと変換後テキストの文ベクトルのコサイン 類似度 •
WO: コンテンツワードのみを抽出した変換元テキストと変換後 テキストのuni-gram単語重複率 • PPL: 変換後テキストの学習済み言語モデルによるパープレ キシティ • GM: STA, WO, 1/PPLの幾何平均
生成例