Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Disentangled Representation Learning for Non-Pa...
Search
nizhny
November 02, 2019
Technology
0
1k
Disentangled Representation Learning for Non-Parallel Text Style Transfer
nizhny
November 02, 2019
Tweet
Share
More Decks by nizhny
See All by nizhny
0309-nlpaperchallenge-nlp5
nizhny
1
670
Other Decks in Technology
See All in Technology
開発生産性を測る前にやるべきこと - 組織改善の実践 / Before Measuring Dev Productivity
kaonavi
10
4.5k
ネットワーク保護はどう変わるのか?re:Inforce 2025最新アップデート解説
tokushun
0
210
LangSmith×Webhook連携で実現するプロンプトドリブンCI/CD
sergicalsix
1
230
LangChain Interrupt & LangChain Ambassadors meetingレポート
os1ma
2
310
FOSS4G 2025 KANSAI QGISで点群データをいろいろしてみた
kou_kita
0
400
AI時代の開発生産性を加速させるアーキテクチャ設計
plaidtech
PRO
3
160
開発生産性を組織全体の「生産性」へ! 部門間連携の壁を越える実践的ステップ
sudo5in5k
2
7.1k
OPENLOGI Company Profile
hr01
0
67k
ビズリーチにおけるリアーキテクティング実践事例 / JJUG CCC 2025 Spring
visional_engineering_and_design
1
120
生成AI活用の組織格差を解消する 〜ビジネス職のCursor導入が開発効率に与えた好循環〜 / Closing the Organizational Gap in AI Adoption
upamune
7
5.2k
「クラウドコスト絶対削減」を支える技術—FinOpsを超えた徹底的なクラウドコスト削減の実践論
delta_tech
4
170
american airlines®️ USA Contact Numbers: Complete 2025 Support Guide
supportflight
1
110
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
For a Future-Friendly Web
brad_frost
179
9.8k
A Tale of Four Properties
chriscoyier
160
23k
A better future with KSS
kneath
238
17k
Rails Girls Zürich Keynote
gr2m
95
14k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
The Straight Up "How To Draw Better" Workshop
denniskardys
234
140k
Why Our Code Smells
bkeepers
PRO
336
57k
Gamification - CAS2011
davidbonilla
81
5.4k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
Disentangled Representation Learning for Non-Parallel Text Style Transfer ACL網羅的サーベイ報告会: Keito
Ishihara
自己紹介 • 石原慧人 • 筑波大B4 • Twitter: @nizhny_
論文概要 • NLPにおけるdisentanglingの研究 • 特にスタイル変換での利用を想定 • マルチタスク学習と敵対的学習を組 み合わせた手法を提案 タイトル雑日本語訳:教師なしテキストスタイル変換のための 解きほぐされた表現学習
スタイル変換とは In CV: 同じ物体の画風を操作するタスク (例) Gatys+(CVPR2016) In NLP: テキストの意味(コンテンツ)を維持したまま、それ以外の情報(スタイル)を操作 するタスク
(例) 私は猫です→我輩は猫である
「教師なし」テキストスタイル変換とは 文to文で変換を行うので教師ありスタイル変換 は翻訳系の手法がほぼそのまま使える 主な研究対象はペアがない場合 主流の手法 1. 入力文の特徴からコンテンツ成分を分離 2. スタイルを付与してデコード という手順で行う
Autoencoder AEで射影される中間表現を二つに分割し、それぞれの空間がス タイルとコンテンツを表現するよう補助損失を追加することで Disentanglementを行う
Style-Oriented Losses マルチタスク学習によりそれぞれの空間にその情報が含まれてい ることを、敵対的学習により余計な情報が含まれないことの保証 を行う Multi-Task Loss for Style: スタイル空間から元々のスタイルを
当てるマルチタスク損失 Adversarial Loss for Style: コンテンツ空間から元々のスタイ ルを当てられないような敵対的損失
Content-Oriented Losses Multi-Task Loss for Content: コンテンツ空間から元々のコンテ ンツを当てるマルチタスク損失 Adversarial Loss
for Content: スタイル空間から元々のコンテ ンツを当てられないような敵対的損失 ※NLPではコンテンツとは何かが明確に定まらないことが多い が、ここでは事前に構築した辞書に基づくコンテンツワードのBoW 表現としている
訓練&推論手順 訓練: 敵対的損失のためのそれぞれの Discriminatorの学習は個別に行い、それ以 外の部分は全て同時に学習を行う 推論: 「エンコーダで特徴空間に射影」→「コンテン ツ空間のベクトルと学習時の目的スタイル の平均を結合」→「デコード」
実験: Disentangling Latent Space
実験:Non-Parallel Text Style Transfer
評価手法 • STA: 変換後テキストがスタイル分類モデルにどの程度意図し たスタイルと分類されるか • CS: 変換元テキストと変換後テキストの文ベクトルのコサイン 類似度 •
WO: コンテンツワードのみを抽出した変換元テキストと変換後 テキストのuni-gram単語重複率 • PPL: 変換後テキストの学習済み言語モデルによるパープレ キシティ • GM: STA, WO, 1/PPLの幾何平均
生成例