Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Introduction to R

Introduction to R

nonki1974

April 06, 2019
Tweet

More Decks by nonki1974

Other Decks in Technology

Transcript

  1. ベクトル | データ構造の基本 # 正規乱数を 6 個生成 rnorm(6) ## [1]

    -1.8346427 0.1121437 -0.2933256 ## [4] 0.8007794 -0.3860248 -0.2725474 → 行の先頭の [1] が何番目の要素かを示している 2
  2. 行列・配列 → 次元属性を持ったベクトル x <- rnorm(6) x ## [1] 0.2585055

    0.6418958 -0.8850625 ## [4] -0.9304199 -0.2260441 1.4271053 dim(x) <- c(2, 3) x ## [,1] [,2] [,3] ## [1,] 0.2585055 -0.8850625 -0.2260441 ## [2,] 0.6418958 -0.9304199 1.4271053 6
  3. 要素の指定 | 行列・配列 x[2, 3] ## [1] 1.427105 # ベクトルの要素番号でも指定できる

    # (ベクトルとしての性質も保持している) x[5] ## [1] -0.2260441 7
  4. リスト fukuoka ## $date ## [1] "2015-10-01" ## ## $city

    ## [1] "福 岡 市" "北 九 州 市" ## ## $popl ## [1] 154 96 9
  5. 要素の参照 | リスト → [[要素番号]] もしくは $ 要素名でリスト内のオブジェクト自 身を参照できる →

    [要素番号] の場合はリストが返される fukuoka$city ## [1] "福 岡 市" "北 九 州 市" fukuoka[[2]] ## [1] "福 岡 市" "北 九 州 市" fukuoka[2] ## $city ## [1] "福 岡 市" "北 九 州 市" 10
  6. データフレーム → 行列風の外見を持つ同じ大きさのベクトルを要素とするリス ト → data.frame() 関数で作成できる city <- c("

    福岡市", " 北九州市", " 久留米市") code <- c("40130", "40100", "40203") popl <- c(154, 96, 30) area <- c(343, 492, 230) fukuoka.df <- data.frame( city = city, code = code, popl = popl, area = area ) 11
  7. データフレームの出力 fukuoka.df ## city code popl area ## 1 福

    岡 市 40130 154 343 ## 2 北 九 州 市 40100 96 492 ## 3 久 留 米 市 40203 30 230 12
  8. データフレームの要素の参照 fukuoka.df$popl ## [1] 154 96 30 fukuoka.df[,3] ## [1]

    154 96 30 fukuoka.df[1,] ## city code popl area ## 1 福 岡 市 40130 154 343 colnames(fukuoka.df) ## [1] "city" "code" "popl" "area" 13
  9. CSV ファイルを読み込む fukuoka2015 <- read.csv("fukuoka2015.csv", fileEncoding = "SJIS") head(fukuoka2015) ##

    area_code 地 域 総 面 積 人 口 総 数 昼 間 人 口 世 帯 数 ## 1 40101 門 司 区 7367 99637 97946 43082 ## 2 40103 若 松 区 7131 82844 82591 33692 ## 3 40105 戸 畑 区 1661 59116 70519 27797 ## 4 40106 小 倉 北 区 3923 181878 224589 91253 ## 5 40107 小 倉 南 区 17174 212850 190913 88497 ## 6 40108 八 幡 東 区 3626 68844 73391 31442 15
  10. データフレームの操作 → 列(変数)の取り出しはリストと同様 → 要素の参照および行や列の参照は行列と同様 # 以下 2 つは同じ結果 fukuoka2015$地域

    fukuoka2015[,2] # 行を取り出す(結果はデータフレーム) fukuoka2015[1,] ## area_code 地 域 総 面 積 人 口 総 数 昼 間 人 口 世 帯 数 ## 1 40101 門 司 区 7367 99637 97946 43082 # 列名(変数名)を参照 colnames(fukuoka2015) ## [1] "area_code" "地 域" "総 面 積" "人 口 総 数" "昼 間 人 口" "世 帯 数" 16
  11. データフレームの要約 | summary() 関数 summary(fukuoka2015) ## area_code 地 域 総

    面 積 人 口 総 数 ## Min. :40101 う き は 市: 1 Min. : 572 Min. : 2174 ## 1st Qu.:40205 み や こ 町: 1 1st Qu.: 2165 1st Qu.: 18805 ## Median :40227 み や ま 市: 1 Median : 4192 Median : 40270 ## Mean :40315 芦 屋 町 : 1 Mean : 6068 Mean : 70901 ## 3rd Qu.:40407 鞍 手 町 : 1 3rd Qu.: 7822 3rd Qu.: 87014 ## Max. :40647 宇 美 町 : 1 Max. :24671 Max. :306015 ## (Other) :62 ## 昼 間 人 口 世 帯 数 ## Min. : 1946 Min. : 742 ## 1st Qu.: 17175 1st Qu.: 7264 ## Median : 37514 Median : 16508 ## Mean : 71486 Mean : 30830 ## 3rd Qu.: 83004 3rd Qu.: 35107 ## Max. :381926 Max. :141682 ## 17
  12. 列(ベクトル)を取り出してプロット hist(fukuoka2015$総面積) plot(昼間人口 ~ 人口総数, data = fukuoka2015) Histogram of

    fukuoka2015$総面積 fukuoka2015$総面積 Frequency 0 5000 10000 15000 20000 25000 0 10 20 30 40 0 50000 150000 250000 0e+00 2e+05 人口総数 昼間人口 18
  13. パッケージによる機能拡張 → パッケージを使うことで多くのことが可能になる → install.packages() 関数を使ってインストール → パッケージ名 :: 関数名

    () でパッケージ内の関数を利用で きる → library() 関数でパッケージをロードすればパッケージ名 を省略可能 → tidydata 形式をサポートしたパッケージ群を tidyverse パ ッケージで一括してインストールできる 19
  14. パッケージの利用例 install.packages("tidyverse") library(tidyverse) fukuoka2015 %>% mutate(人口密度 = 100 * 人口総数

    / 総面積) %>% ggplot(aes(人口密度, 昼間人口, label = 地域)) + geom_point() + theme_bw(base_size = 16) 20
  15. 因子型 (factor) → R で名義尺度および順序尺度を扱うためのデータ型 → 文字型 (character) と異なるので注意 →

    factor() 関数を使って,文字型のベクトルから因子型に変 換できる → levels 引数で水準(カテゴリ)のベクトルを指定 → 因子型の実体は整数型のベクトルに水準を表すベクトルが加 わったもの 22
  16. とりあえず文字型 bloodtype <- c("B","A","A","A","AB", "B","AB","A","A","A","C") bloodtype ## [1] "B" "A"

    "A" "A" "AB" "B" "AB" "A" "A" "A" "C" # ベクトルの要素をカウント table(bloodtype) ## bloodtype ## A AB B C ## 6 2 2 1 23
  17. 因子型に変換 | factor() 関数 bloodtype.f <- factor(bloodtype, levels = c("A",

    "B", "O", "AB")) bloodtype.f ## [1] B A A A AB B AB A A A <NA> ## Levels: A B O AB # O 型がいない場合,度数ゼロで集計してくれる table(bloodtype.f) ## bloodtype.f ## A B O AB ## 6 2 0 2 table(addNA(bloodtype.f)) ## ## A B O AB <NA> ## 6 2 0 2 1 24
  18. 因子型の中身 str(bloodtype.f) ## Factor w/ 4 levels "A","B","O","AB": 2 1

    1 1 4 2 4 1 1 1 ... # 整数型に変換 as.numeric(bloodtype.f) ## [1] 2 1 1 1 4 2 4 1 1 1 NA # 対応する水準ベクトルの文字に変換 as.character(bloodtype.f) ## [1] "B" "A" "A" "A" "AB" "B" "AB" "A" "A" "A" NA 25
  19. 因子型の利用例 | iris データを例に iris データ R に標準で組み込まれているデータセット 多変量データの例としてよく用いられる head(iris,

    n = 3) ## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ## 1 5.1 3.5 1.4 0.2 setosa ## 2 4.9 3.0 1.4 0.2 setosa ## 3 4.7 3.2 1.3 0.2 setosa str(iris) ## 'data.frame': 150 obs. of 5 variables: ## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... ## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... ## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... ## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... ## $ Species : Factor w/ 3 levels "setosa","versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ... 26
  20. 因子型の利用例 | 層別散布図 ggplot(iris, aes(Sepal.Width, Petal.Width, color = Species)) geom_point()

    + facet_wrap(~Species) + theme_bw(base_size = 14) setosa versicolor virginica 2.0 2.5 3.0 3.5 4.0 4.52.0 2.5 3.0 3.5 4.0 4.52.0 2.5 3.0 3.5 4.0 4.5 0.0 0.5 1.0 1.5 2.0 2.5 Sepal.Width Petal.Width Species setosa versicolor virginica 29