Upgrade to Pro — share decks privately, control downloads, hide ads and more …

所要時間のヒートマップを作成する

Sponsored · SiteGround - Reliable hosting with speed, security, and support you can count on.
Avatar for nonki1974 nonki1974
December 08, 2018

 所要時間のヒートマップを作成する

Avatar for nonki1974

nonki1974

December 08, 2018
Tweet

More Decks by nonki1974

Other Decks in Technology

Transcript

  1. 道具 → Google Maps Platform の Directions API → R

    から呼び出すパッケージ:googleway package → 土地利用 3 次メッシュ@国土数値情報 → kokudosuuchi , sf package → rmapshaper package 3
  2. Directions API → Google Map Platform 経路探索 API → 月

    40000 回呼び出しま で無料で使える → 日本では電車の経路は使 えない(徒歩,バス, 車,自転車のみ) 4
  3. 利用データの識別子の確認 → 国土数値情報の「土地利用 3 次メッシュ」と「行政区域」の データを API 経由でダウンロードするため,識別子を調べる。 kokudosuuchi::getKSJSummary() %>%

    filter(title == "土地利用 3 次メッシュ") ## # A tibble: 1 x 5 ## identifier title field1 field2 ## <chr> <chr> <chr> <chr> ## 1 L03-a 土地利用~ 国土(水・~ 土地利用~ ## # ... with 1 more variable: ## # areaType <chr> kokudosuuchi::getKSJSummary() %>% filter(title=="行政区域") ## # A tibble: 1 x 5 ## identifier title field1 field2 ## <chr> <chr> <chr> <chr> 6
  4. 福岡県を覆う3次メッシュを取ってくる → st_transform() 関数で平面直角座標系に変換 kokudosuuchi::getKSJURL("L03-a", meshCode = c(5030, 5031, 4930))

    %>% filter(year == 2014, datum == 2) %>% pull(zipFileUrl) %>% map(kokudosuuchi::getKSJData) %>% flatten %>% data.table::rbindlist() %>% st_as_sf() %>% st_transform(crs = 2444) -> kyushu.mesh 7
  5. 福岡県の行政界を取ってくる kokudosuuchi::getKSJURL("N03", prefCode = 40) %>% filter(year == 2014) %>%

    pull(zipFileUrl) %>% map(kokudosuuchi::getKSJData) %>% flatten %>% data.table::rbindlist() %>% st_as_sf() %>% st_transform(crs = 2444) -> fukuoka.boundary 8
  6. メッシュの切り出しと中心点の計算 福岡県の行政界でメッシュを切り出す st_join(kyushu.mesh, fukuoka.boundary, join = st_intersects) %>% filter(!is.na(N03_007)) ->

    fukuoka.mesh メッシュの中心点を計算して,出発点として使う fukuoka.mesh %>% mutate(center = st_centroid(geometry)) %>% st_set_geometry("center") %>% st_transform(crs = 4326) %>% mutate(x = st_coordinates(center)[,2], y = st_coordinates(center)[,1]) -> fukuoka.centroid 9
  7. 明らかに不要なメッシュを除去 & APIキーの 設定 fukuoka.centroid %>% filter(海水域 < 500000) %>%

    select(x, y) %>% as.data.frame() %>% select(-center) -> fukuoka.origin set_key("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") 10
  8. API呼び出し → google_directions() 関数を使う → mode = "transit"で徒歩+バスの経路検索(日本の場合) fukuoka.origin %>%

    pmap(function(x, y){ tryCatch({ google_directions(origin = data.frame(x, y), destination = c(33.591679, 130.398177), mode = "transit", departure_time = as.POSIXct("2018-12-10 07:00:00")) }, error = function(e){ return(NA) }) }) -> tenjin.duration 11
  9. 結果のリストを処理する関数を定義 get_duration <- function(dlist){ if("status" %in% names(dlist)){ if(dlist$status == "OK"){

    direction_legs(dlist) %>% select(duration, start_location, end_location) %>% rlist::list.flatten() } } } Unzip <- function(...) rbind(data.frame(), ...) 12
  10. データフレームにしてsfにする メッシュと結合するため平面直角座標系にしておく tenjin.duration %>% map(get_duration) %>% do.call(Unzip, .) %>% st_as_sf(coords

    = c("start_location.lng", "start_location.lat"), crs = 4326) %>% st_transform(crs = 2444) -> tenjin.duration.df メッシュと結合 st_join(fukuoka.mesh, tenjin.duration.df, join = st_intersects) %>% filter(!is.na(duration.value)) -> tenjin.duration.mesh 13
  11. 地図の描画 # 小さい離島を除いておく library(rmapshaper) fukuoka.boundary <- ms_filter_islands( fukuoka.boundary, min_area =

    2000000 ) ggplot() + geom_sf(data = fukuoka.boundary, aes(fill = NULL)) + geom_sf(data = tenjin.duration.mesh, aes(fill = cut(duration.value, quantile(duration.value)))) + coord_sf(datum = NA) + theme_void() 14