$30 off During Our Annual Pro Sale. View Details »

Dasymetric Tessellaton

Dasymetric Tessellaton

What if You Shade a Polygon and No One can see it?
Bigger Might be Better

Walter Kent Tierchen
State of Minnesota


Nathaniel V. KELSO

October 16, 2015

More Decks by Nathaniel V. KELSO

Other Decks in Education


  1. Dasymetric  Tessella.on     What  if  You  Shade  a  Polygon

     and  No   One  can  see  it?   or   Bigger  Might  be  Be<er  
  2. None
  3. None
  4. None
  5. None
  6. None
  7. None
  8. None
  9. None
  10. None
  11. Tessella>on   •  A  >ling  of  regular  polygons   h<p://mathworld.wolfram.com/RegularTessella>on.html

  12. None
  13. None
  14. None
  15. None
  16. Dasymetric  Mapping   A<ribute  data  which…      is  organized

     by  a  large  or  arbitrary  area   unit  is  more  accurately  distributed  within  that   unit  by  the  overlay  of  geographic  boundaries   that  exclude,  restrict,  or  confine  the  a<ribute  in   ques>on.   h<p://support.esri.com/en/knowledgebase/GISDic>onary/term/dasymetric%20mapping  
  17. None
  18. None
  19. None
  20. None
  21. None
  22. None
  23. None
  24. What  problem  are  you  trying  to  solve?   •  Some

     polygons  are  too  small  to  see   •  Possible  solu>ons   – Hand  out  magnifying  glasses   – Really  big  paper   – Delete  small  polygons   – Use  a  standard  size  for  all  small  polygons   – Buffer  small  areas   •  Overlapping  buffers   •  Topology  errors  
  25. •  2,800  ci>es,  townships  and  unorganized  areas   •  From

     1/10th  of  a  square  mile  to  over  1,000  square  miles   •  Average  size  30  sq  mi   •  The  maps  were  correct  but  difficult  to  see  small  areas   •  Choropleth  issue   •  Density  higher  in  ci>es  and  size  did  not  represent  taxpayers  impacted,  typically  an   inverse  ra>o   •  Select  size  and  shape  of  tessella>on   •  Tried  all  three  regular  tessella>ons,  triangle,  square  and  hexagon.   •  Joe  Berry  stated  that  hexagon  was  the  best  way  to  represent  maps.   •  Tessella>on  size  was  trial  and  error,  needed  to  be  small  enough  to  represent  the   smallest  polygon  in  the  layer.   •  Too  small  would  result  in  millions  of  extra  cells   •  Limita>ons;  ci>es  bounded  by  other  ci>es  (metro  areas)  could  not  be  enlarged,   shape  is  not  maintained,  small  areas  easier  to  see,  but  s>ll  small