Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Making sense of DNA methylation data

Peter Hickey
September 15, 2014

Making sense of DNA methylation data

PhD completion seminar presented at the Walter Eliza Hall Institute on 15 September, 2014.
Making sense of DNA methylation data by Peter Hickey is licensed under a Creative Commons Attribution 4.0 International License.

Peter Hickey

September 15, 2014
Tweet

More Decks by Peter Hickey

Other Decks in Science

Transcript

  1. Making  sense  of     DNA  methyla4on  data   Peter

     Hickey     @PeteHaitch   15  September  2014  
  2. Coding RA work Writing Analyses Talk preparation Seminars Exercise Japanese

    study Reading papers Email and admin Tutoring Meetings 0 200 400 600 Hours How I've spent my time since 13 January, 2014
  3. "Cytosine  becomes  thymine"  by  CFCF  -­‐  Own  work.  Licensed  under

     Crea4ve  Commons  AEribu4on-­‐Share  Alike  3.0  via  Wikimedia  Commons  -­‐   hEp://commons.wikimedia.org/wiki/File:Cytosine_becomes_thymine.png#mediaviewer/File:Cytosine_becomes_thymine.png  
  4. "Cytosine  becomes  thymine"  by  CFCF  -­‐  Own  work.  Licensed  under

     Crea4ve  Commons  AEribu4on-­‐Share  Alike  3.0  via  Wikimedia  Commons  -­‐   hEp://commons.wikimedia.org/wiki/File:Cytosine_becomes_thymine.png#mediaviewer/File:Cytosine_becomes_thymine.png  
  5. Cancer  Genome  Atlas  Research  Network.  "Integrated  genomic  analyses  of  

    ovarian  carcinoma."  Nature  474.7353  (2011):  609-­‐615.   AMT   Gene  expression   Promoter  methyla4on   0   1   -­‐4   0   2   -­‐2  
  6. Cancer  Genome  Atlas  Research  Network.  "Integrated  genomic  analyses  of  

    ovarian  carcinoma."  Nature  474.7353  (2011):  609-­‐615.   AMT   Gene  expression   Promoter  methyla4on   0   1   -­‐4   0   2   -­‐2   hEp://commons.wikimedia.org/wiki/File:Calico_cat_-­‐ _Phoebe.jpg#mediaviewer/File:Calico_cat_-­‐_Phoebe.jpg  
  7. Cancer  Genome  Atlas  Research  Network.  "Integrated  genomic  analyses  of  

    ovarian  carcinoma."  Nature  474.7353  (2011):  609-­‐615.   AMT   Gene  expression   Promoter  methyla4on   0   1   -­‐4   0   2   -­‐2   hEp://commons.wikimedia.org/wiki/File:Calico_cat_-­‐ _Phoebe.jpg#mediaviewer/File:Calico_cat_-­‐_Phoebe.jpg   hEp://commons.wikimedia.org/wiki/File%3ABlastocyst_embryo.png  
  8. m m m m .! ACGCGAAACGTTCTATCGG! + ! Sodium  bisulfite

      =   ACGTGAAACGAACTATCGG! m m m.!
  9. m m m m .! ACGCGAAACGTTCTATCGG! + ! PCR  amplifica4on

      =   ACGTGAAACGAACTATCGG! m m m.!
  10. m m m m .! ACGCGAAACGTTCTATCGG! + ! PCR  amplifica4on

      =   ACGCGAAACGTTCTATCGG! m m m.!
  11. m m m m .! ACGCGAAACGTTCTATCGG! + ! Sodium  bisulfite

      =   ACGTGAAACGAACTATCGG! m m m.!
  12. m m m m .! ACGCGAAACGTTCTATCGG! + ! Sodium  bisulfite

      =   ACGTGAAACGAACTATCGG! m m m.!
  13. m m m m .! ACGCGAAACGTTCTATCGG! + ! Sodium  bisulfite

      =   ACGUGAAACGTTCTATCGG! m m m.!
  14. m m m m .! ACGUGAAACGTTCTATCGG! + ! PCR  

    =   ACGTGAAACGAACTATCGG! m m m.!
  15. m m m m .! ACGUGAAACGTTCTATCGG! + ! PCR  amplifica4on

      =   ACGTGAAACGAACTATCGG! m m m.!
  16. m m m m .! ACGUGAAACGTTCTATCGG! + ! PCR  amplifica4on

      =   ACGTGAAACGTTCTATCGG! m m m.!
  17. m m m m .! ACGUGAAACGTTCTATCGG! + ! PCR  amplifica4on

      =   ACGTGAAACGTTCTATCGG! m m m.!
  18. Bisulfite  treatment  of  DNA   +        

      =   Whole-­‐genome  bisulfite-­‐sequencing  
  19. 0.0 0.5 1.0 1000 2000 3000 4000 Position (bp) β−value

    Cov 0 25 50 75 sample sample1 sample2 sample3 sample4 sample5
  20. CpG island 0.0 0.5 1.0 1000 2000 3000 4000 Position

    (bp) β−value Cov 0 25 50 75 sample sample1 sample2 sample3 sample4 sample5
  21. CpG island gene 0.0 0.5 1.0 1000 2000 3000 4000

    Position (bp) β−value Cov 0 25 50 75 sample sample1 sample2 sample3 sample4 sample5
  22. CpG island gene 0.0 0.5 1.0 1000 2000 3000 4000

    Position (bp) β−value Coverage 0 20 40 60 sample sample1 Data:  Emma  Whitelaw  
  23. Lister  data   ADS   ADS-­‐adipose   ADS-­‐iPSC   Organism

      Human  (female)   Human  (female)   Human  (female)   Cell  type   Soma4c   Soma4c   Induced  pluripotent  stem   cell  (iPSC)   Descrip/on   Adipose   Adipocytes  derived  from   ADS   iPSC  line  derived  from  ADS   Sequencing   75  bp  paired-­‐end   75  bp  paired-­‐end   75  bp  paired-­‐end   Average   coverage   23×   24×   26×     Lister,  Ryan,  et  al.  "Hotspots  of  aberrant  epigenomic  reprogramming  in  human  induced  pluripotent  stem   cells."  Nature  471.7336  (2011):  68-­‐73.  
  24. ADS ADS−adipose ADS−iPSC 0 2,000,000 4,000,000 0.00 0.25 0.50 0.75

    1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 β count
  25. ADS ADS−adipose ADS−iPSC 0 2,000,000 4,000,000 0.00 0.25 0.50 0.75

    1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 β count CpG island Non CpG island
  26. CpG island gene 0.0 0.5 1.0 1000 2000 3000 4000

    Position (bp) β−value Coverage 0 20 40 60 sample sample1 Data:  Emma  Whitelaw  
  27. CpG island gene 0.0 0.5 1.0 1000 2000 3000 4000

    Position (bp) β−value Coverage 0 20 40 60 sample sample1 Data:  Emma  Whitelaw  
  28. CpG island gene 0.0 0.5 1.0 1000 2000 3000 4000

    Position (bp) β−value Coverage 0 20 40 60 sample sample1 Data:  Emma  Whitelaw  
  29. CpG island gene 0.0 0.5 1.0 1000 2000 3000 4000

    Position (bp) β−value Cov 0 20 40 60 sample mouse1 Data:  Emma  Whitelaw  
  30. CpG island gene 0.0 0.5 1.0 1000 2000 3000 4000

    Position (bp) β−value Cov 0 25 50 75 sample mouse1 mouse2 mouse3 mouse4 mouse5 Data:  Emma  Whitelaw  
  31. CpG island gene 0.0 0.5 1.0 1000 2000 3000 4000

    Position (bp) β−value Cov 0 25 50 75 sample mouse1 mouse2 mouse3 mouse4 mouse5 Data:  Emma  Whitelaw  
  32. Co-­‐methyla4on  =  co-­‐occurence   “The  presence  of  methyla<on  over  a

     stretch  of   neighboring  CpG  posi<ons”   Schatz,  Philipp,  Dimo  Dietrich,  and  MaEhias  Schuster.  "Rapid  analysis  of  CpG  methyla4on  paEerns  using  RNase  T1  cleavage  and  MALDI-­‐TOF."   Nucleic  acids  research  32.21  (2004):  e167-­‐e167.  
  33. Co-­‐methyla4on  =  co-­‐occurence   “The  presence  of  methyla<on  over  a

     stretch  of   neighboring  CpG  posi<ons”   Schatz,  Philipp,  Dimo  Dietrich,  and  MaEhias  Schuster.  "Rapid  analysis  of  CpG  methyla4on  paEerns  using  RNase  T1  cleavage  and  MALDI-­‐TOF."   Nucleic  acids  research  32.21  (2004):  e167-­‐e167.  
  34. Co-­‐methyla4on  =  co-­‐occurence   “The  presence  of  methyla<on  over  a

     stretch  of   neighboring  CpG  posi<ons”   Schatz,  Philipp,  Dimo  Dietrich,  and  MaEhias  Schuster.  "Rapid  analysis  of  CpG  methyla4on  paEerns  using  RNase  T1  cleavage  and  MALDI-­‐TOF."   Nucleic  acids  research  32.21  (2004):  e167-­‐e167.  
  35. Co-­‐methyla4on  =  correla4on   “The  rela<onship  between  the  degree  of

      methyla<on  over  distance”   1.  Within-­‐fragment  co-­‐methyla4on   2.  Correla4on  of  β-­‐values   Eckhardt,  Florian,  et  al.  "DNA  methyla4on  profiling  of  human  chromosomes  6,  20  and  22."  Nature  gene4cs  38.12  (2006):  1378-­‐1385.  
  36. Co-­‐methyla4on  =  correla4on   “The  rela<onship  between  the  degree  of

      methyla<on  over  distance”   1.  Within-­‐fragment  co-­‐methyla4on   2.  Correla4on  of  β-­‐values   Eckhardt,  Florian,  et  al.  "DNA  methyla4on  profiling  of  human  chromosomes  6,  20  and  22."  Nature  gene4cs  38.12  (2006):  1378-­‐1385.  
  37. Co-­‐methyla4on  =  correla4on   “The  rela<onship  between  the  degree  of

      methyla<on  over  distance”   1.  Within-­‐fragment  co-­‐methyla4on   2.  Correla4on  of  β-­‐values   Eckhardt,  Florian,  et  al.  "DNA  methyla4on  profiling  of  human  chromosomes  6,  20  and  22."  Nature  gene4cs  38.12  (2006):  1378-­‐1385.  
  38. Co-­‐methyla4on  =  correla4on   “The  rela<onship  between  the  degree  of

      methyla<on  over  distance”   1.  Within-­‐fragment  co-­‐methyla/on   2.  Correla4on  of  β-­‐values   Eckhardt,  Florian,  et  al.  "DNA  methyla4on  profiling  of  human  chromosomes  6,  20  and  22."  Nature  gene4cs  38.12  (2006):  1378-­‐1385.  
  39. DATA TYPE 38,721,970 bp 38,721,980 bp 38,721,990 bp 38,722,000 bp

    38,722,010 bp 38,722,020 bp 38,722,030 bp 38,722,040 bp 38,722,050 bp 91 bp chr4 p16.2 p15.33 p15.31 p15.1 p14 p13 p11 q12 q13.1 q13.2 q21.1 q21.23 q22.2 q23 q24 q25 q26 q27 q28.2 q31.1 q31.22 q31.3 q32.2 q33 q34.2 q35.1 IMR90-iPSC coverage IMR90-iPSC [0 - 35] G A Sequence RefSeq genes CpGs CpG islands A G A G T A G C A A A C A C T A A T C T A C G A A T A A T G A A C A T A G G C A T T A T T T T A A G A A C C A A A A G A A A G C A C G T G G G C A T T T G G T T T A C A C A T C A C T CpGs  
  40. NAME DATA TYPE DATA FILE 38,721,970 bp 38,721,980 bp 38,721,990

    bp 38,722,000 bp 38,722,010 bp 38,722,020 bp 38,722,030 bp 38,722,040 bp 38,722,050 bp 91 bp chr4 p16.2 p15.33 p15.31 p15.1 p14 p13 p11 q12 q13.1 q13.2 q21.1 q21.23 q22.2 q23 q24 q25 q26 q27 q28.2 q31.1 q31.22 q31.3 q32.2 q33 q34.2 q35.1 IMR90-iPSC coverage IMR90-iPSC [0 - 35] G A Sequence RefSeq genes CpGs CpG islands A G A G T A G C A A A C A C T A A T C T A C G A A T A A T G A A C A T A G G C A T T A T T T T A A G A A C C A A A A G A A A G C A C G T G G G C A T T T G G T T T A C A C A T C A C T CpGs  
  41. NAME DATA TYPE DATA FILE 38,721,970 bp 38,721,980 bp 38,721,990

    bp 38,722,000 bp 38,722,010 bp 38,722,020 bp 38,722,030 bp 38,722,040 bp 38,722,050 bp 91 bp chr4 p16.2 p15.33 p15.31 p15.1 p14 p13 p11 q12 q13.1 q13.2 q21.1 q21.23 q22.2 q23 q24 q25 q26 q27 q28.2 q31.1 q31.22 q31.3 q32.2 q33 q34.2 q35.1 IMR90-iPSC coverage IMR90-iPSC [0 - 35] G A Sequence RefSeq genes CpGs CpG islands A G A G T A G C A A A C A C T A A T C T A C G A A T A A T G A A C A T A G G C A T T A T T T T A A G A A C C A A A A G A A A G C A C G T G G G C A T T T G G T T T A C A C A T C A C T Second CpG Methylated Unmethylated Total First CpG Methylated 1 2 3 Unmethylated 0 4 4 Total 1 6 7 CpGs  
  42. NAME DATA TYPE DATA FILE 38,721,970 bp 38,721,980 bp 38,721,990

    bp 38,722,000 bp 38,722,010 bp 38,722,020 bp 38,722,030 bp 38,722,040 bp 38,722,050 bp 91 bp chr4 p16.2 p15.33 p15.31 p15.1 p14 p13 p11 q12 q13.1 q13.2 q21.1 q21.23 q22.2 q23 q24 q25 q26 q27 q28.2 q31.1 q31.22 q31.3 q32.2 q33 q34.2 q35.1 IMR90-iPSC coverage IMR90-iPSC [0 - 35] G A Sequence RefSeq genes CpGs CpG islands A G A G T A G C A A A C A C T A A T C T A C G A A T A A T G A A C A T A G G C A T T A T T T T A A G A A C C A A A A G A A A G C A C G T G G G C A T T T G G T T T A C A C A T C A C T Second CpG Methylated Unmethylated Total First CpG Methylated 1 2 3 Unmethylated 0 4 4 Total 1 6 7 log-odds ratio = log 2 1.5 × 4.5 2.5 × 0.5 ( )=2.4 CpGs  
  43. Do  this  50  million  4mes  per  sample   chr strand

    pos1 pos2 MM MU UM UU! chr1 + 469 471 0 5 1 0! chr1 + 471 484 1 0 4 1! chr1 + 484 489 3 2 1 0! chr1 + 489 493 4 2 1 1! chr1 + 493 497 4 1 3 0! chr1 + 497 525 6 0 1 0! chr1 + 525 542 4 0 0 0! chr1 + 525 563 1 0 0 0! ... ! ... ! ! ... ! !... ! ... ... ... ...!
  44. 0 10000 20000 30000 40000 −4 −2 0 2 4

    6 8 log2 −odds ratio count ADS: Distance between CpGs = 10 bp
  45. −4 −2 0 2 4 6 8 0 10000 20000

    30000 40000 count log2 −odds ratio ADS: Distance = 10 bp
  46. −4 −2 0 2 4 6 8 0 10000 20000

    30000 40000 count log2 −odds ratio ADS: Distance = 10 bp 10% 25% 50% 75% 90% −4 −2 0 2 4 6 8 0 50 100 150 200 250 Distance between CpGs (bp) log2 −odds ratio ADS: Distribution of log2 −odds ratio
  47. −4 −2 0 2 4 6 8 0 10000 20000

    30000 40000 count log2 −odds ratio ADS: Distance = 10 bp 10% 25% 50% 75% 90% −4 −2 0 2 4 6 8 0 50 100 150 200 250 Distance between CpGs (bp) log2 −odds ratio ADS: Distribution of log2 −odds ratio
  48. −4 −2 0 2 4 6 8 0 10000 20000

    30000 40000 count log2 −odds ratio ADS: Distance = 10 bp 10% 25% 50% 75% 90% −4 −2 0 2 4 6 8 0 50 100 150 200 250 Distance between CpGs (bp) log2 −odds ratio ADS: Distribution of log2 −odds ratio
  49. 10% 25% 50% 75% 90% −4 −2 0 2 4

    6 8 0 50 100 150 200 250 Distance between CpGs (bp) log2 −odds ratio ADS: Distribution of log2 −odds ratio
  50. 10% 25% 50% 75% 90% −4 −2 0 2 4

    6 8 0 50 100 150 200 Distance between CpGs (bp) log2 −odds ratio quantile 10 25 50 75 90 ADS: Distribution of log2 −odds ratio
  51. ADS ADS−adipose ADS−iPSC −2 0 2 4 6 0 50

    100 150 200 0 50 100 150 200 0 50 100 150 200 Distance between CpGs (bp) log2 −odds ratio quantile 10 25 50 75 90
  52. CpG island Non CpG island 0.0 2.5 5.0 0.0 2.5

    5.0 0.0 2.5 5.0 ADS ADS−adipose ADS−iPSC 0 50 100 150 200 0 50 100 150 200 Distance between CpGs (bp) log2 −odds ratio CGI CpG island Non CpG island quantile 10 25 50 75 90
  53. Co-­‐methyla4on  =  correla4on   “The  rela<onship  between  the  degree  of

      methyla<on  over  distance”   1.  Within-­‐fragment  co-­‐methyla4on   2.  Correla/on  of  β-­‐values   Eckhardt,  Florian,  et  al.  "DNA  methyla4on  profiling  of  human  chromosomes  6,  20  and  22."  Nature  gene4cs  38.12  (2006):  1378-­‐1385.  
  54. −1.0 −0.5 0.0 0.5 1.0 0 500 1000 1500 Distance

    between CpGs (bp) Pearson correlation ADS: Correlation of β−values
  55. ADS ADS−adipose ADS−iPSC −1.0 −0.5 0.0 0.5 1.0 0 500

    1000 1500 0 500 1000 1500 0 500 1000 1500 Distance between CpGs (bp) Pearson correlation
  56. ADS ADS−adipose ADS−iPSC −1.0 −0.5 0.0 0.5 1.0 0 100

    200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 Distance between CpGs (bp) Pearson correlation
  57. ADS ADS−adipose ADS−iPSC −1.0 −0.5 0.0 0.5 1.0 0 100

    200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 Distance between CpGs (bp) Pearson correlation "Pioneer  Factor  rearrange  the  nucleosome"  by  Wenqiang  Shi  -­‐  Own  work.  Licensed  under  Crea4ve  Commons  AEribu4on-­‐Share  Alike   3.0  via  Wikimedia  Commons  -­‐  hEp://commons.wikimedia.org/wiki/ File:Pioneer_Factor_rearrange_the_nucleosome.jpg#mediaviewer/File:Pioneer_Factor_rearrange_the_nucleosome.jpg  
  58. ADS ADS−adipose ADS−iPSC −1.0 −0.5 0.0 0.5 1.0 0 100

    200 300 0 100 200 300 0 100 200 300 Distance between CpGs (bp) Pearson correlation CpG island Non CpG island
  59. CGI 1RQï&*, 0 1 2 3 4 0 1 0

    1 ` values density data Real (ADS) methsim Distribution of ` values 0 1 0 1 CGI 1RQï&*, 0 250 500 750 1000 Distance between CpGs (bp) Pearson correlation data Real (ADS) methsim Correlations of pairs of ` values 0 4 0 4 CGI 1RQï&*, 0 50 100 150 200 Distance between CpGs (bp) median log odds ratio data Real (ADS) methsim Within haplotype co-methylation at neighbouring CpGs methsim! www.github.com/PeteHaitch/methsim  
  60. Methylome  of  the  agou/  viable  yellow   mouse  (Avy)  

    Some  of  these  mice  are  not  like  the  others  (we  hope…)  
  61. Morgan,  Hugh  D.,  et  al.  "Epigene4c  inheritance  at  the  agou4

     locus  in  the  mouse."  Nature  gene4cs  23.3  (1999):  314-­‐318.   Methylated  Avy     Unmethylated  Avy    
  62. Experimental  design   C57BL/6   Isogenic*   "Liver  (transparent)"  by

     Mikael  Häggström  -­‐  File:Human  Hepar.jpg.  Licensed  under  Public  domain  via  Wikimedia  Commons  –     hEp://commons.wikimedia.org/wiki/File:Liver_(transparent).png#mediaviewer/File:Liver_(transparent).png  
  63. Experimental  design   a/a   a/a   a/a   Avy/a

      Avy/a   C57BL/6   Isogenic*  
  64. Experimental  design   a/a   a/a   a/a   Avy/a

      Avy/a   Avy  +  3  Mb  of  C3H  
  65. Experimental  design   a/a   a/a   a/a   Avy/a

      Avy/a   +   30×  whole-­‐genome  bisulfite-­‐sequencing   =     epialleles  
  66. Experimental  design   a/a   a/a   a/a   Avy/a

      Avy/a   +   30×  whole-­‐genome  bisulfite-­‐sequencing   =     $$$$$  
  67. Experimental  design   a/a   a/a   a/a   Avy/a

      Avy/a   +   30×  whole-­‐genome  bisulfite-­‐sequencing   =     epialleles  
  68. Method   1.  Some  of  these  mice  are  not  like

     the  others?   2.  Is  my  neighbour  also  different?   3.  Is  my  neighbour  different  in  the  same  way  as   me?  
  69. Some  of  these  mice  are  not  like  the  others?  

    Mouse1   Mouse2   Mouse3   Mouse4   Mouse5   Methylated   17   31   15   23   9   Unmethylated   1   3   0   1   1   P-­‐value  =  0.76  
  70. Some  of  these  mice  are  not  like  the  others?  

    Mouse1   Mouse2   Mouse3   Mouse4   Mouse5   Methylated   38   79   59   69   44   Unmethylated   1   2   1   2   46   P-­‐value  =  2  ×  10-­‐25      
  71. Some  of  these  mice  are  not  like  the  others?  

    P-­‐value  <  threshold   à  (candidate)  differen4ally  methylated  CpG  (DMC)   Mouse1   Mouse2   Mouse3   Mouse4   Mouse5   Methylated   38   79   59   69   44   Unmethylated   1   2   1   2   46   P-­‐value  =  2  ×  10-­‐25      
  72. "Run-­‐DMC  Logo”  Licensed  under  Public  domain  via  Wikimedia  Commons  -­‐

     hEp://commons.wikimedia.org/ wiki/File:Run-­‐DMC_Logo.svg#mediaviewer/File:Run-­‐DMC_Logo.svg  
  73. Is  my  neighbour  also  different?   1.  Find  runs  of

     CpGs     –  P-­‐value  <  threshold     –  Within  distance  of  next  CpG   –  Some  allowance  for  missing  or  “insignificant”  CpGs   2.  Filter  candidate  runs   –  Run  contains  enough  CpGs  
  74. 0.00 0.25 0.50 0.75 1.00 1000 1100 1200 1300 start

    β sample mouse1 mouse2 mouse3 mouse4 mouse5 An inconsistent candidate region Data:  Emma  Whitelaw  
  75. 0.00 0.25 0.50 0.75 1.00 1000 1100 1200 1300 start

    β sample mouse1 mouse2 mouse3 mouse4 mouse5 An inconsistent candidate region Data:  Emma  Whitelaw  
  76. Is  my  neighbour  different  in  the  same   way  as

     me?   •  Flag  regions  with  3-­‐way  interac4on  between   sample  ×  methyla4on  level  ×  posi4on   – Not  quite  what  we  want   – So  plot,  plot,  plot    
  77. CpG island gene 0.0 0.5 1.0 1000 2000 3000 4000

    Position (bp) β−value Cov 0 25 50 75 sample mouse1 mouse2 mouse3 mouse4 mouse5 Data:  Emma  Whitelaw  
  78. “Doesn’t  the  gardener  lavish  more  care  on   the  thorns

     than  on  the  flowers”   "Agnon"  of  Unknown  -­‐  The  David  B.  Keidan  Collec4on  of  Digital  Images  from  the  Central  Zionist  Archives  (via  Harvard  University  Library).   Licensed  under  the  Public  Domain  via  Wikimedia  Commons  -­‐  hEp://commons.wikimedia.org/wiki/File:Agnon.jpg#mediaviewer/File:Agnon.jpg   -­‐  Hartman  in  Metamorphisis  by  S.Y.  Agnon   Via  @erichlya  
  79. “You  can  observe  a  lot  by  watching”   "Yogi  Berra

     1956"  by  unknown  -­‐  Baseball  Digest,  front  cover,  September  1956  issue.  [1].  Licensed  under  Public  domain  via  Wikimedia  Commons   -­‐  hEp://commons.wikimedia.org/wiki/File:Yogi_Berra_1956.png#mediaviewer/File:Yogi_Berra_1956.png   -­‐  Yogi  Berra  
  80. What  I  found   •  Es4mated  strong  spa4al  dependence  of

     DNA   methyla4on   •  Cell-­‐type  differences  in  dependence  structure   •  Evidence  of  higher  order  chroma4n  structure   in  spa4al  dependence  data  
  81. What  I  found   •  Es4mated  strong  spa4al  dependence  of

     DNA   methyla4on   •  Cell-­‐type  differences  in  dependence  structure   •  Evidence  of  higher  order  chroma4n  structure   in  spa4al  dependence  data  
  82. What  I  found   •  Es4mated  strong  spa4al  dependence  of

     DNA   methyla4on   •  Cell-­‐type  differences  in  dependence  structure   •  Evidence  of  higher  order  chroma4n  structure   in  spa4al  dependence  data  
  83. Acknowledgements   Data   –  Ryan  Lister  et  al.  (UWA,

     Salk   Ins4tute)     –  Sue  Clark,  Aaron  Statham  (Garvan   Ins4tute)   –  Emma  Whitelaw,  Harry  Oey  (La   Trobe)   –  Kasper  Hansen,  Rafael  Irizarry   (Johns  Hopkins,  Harvard)   –  Everyone  who  makes  their  data   publicly  available   Methodology  &  technology   –  Kasper  Hansen,  Rafael  Irizarry   (Johns  Hopkins,  Harvard)   –  Felix  Krueger  (Babraham  Ins4tute)   –  Toby  Sargeant  (WEHI)   –  Keith  SaEerley  (WEHI)   –  Bioconductor  developers   –  WEHI  Bioinforma4cs   –  Everyone  who  makes  their   soSware  open  source   Sanity:  Family  and  friends   Funding:  APA  and  VLSCI   Sanity:  Family  and  friends  
  84. Acknowledgements   Data   –  Ryan  Lister  et  al.  (UWA,

     Salk   Ins4tute)     –  Sue  Clark,  Aaron  Statham  (Garvan   Ins4tute)   –  Emma  Whitelaw,  Harry  Oey  (La   Trobe)   –  Kasper  Hansen,  Rafael  Irizarry   (Johns  Hopkins,  Harvard)   –  Everyone  who  makes  their  data   publicly  available   Methodology  &  technology   –  Kasper  Hansen,  Rafael  Irizarry   (Johns  Hopkins,  Harvard)   –  Felix  Krueger  (Babraham  Ins4tute)   –  Toby  Sargeant  (WEHI)   –  Keith  SaEerley  (WEHI)   –  Bioconductor  developers   –  WEHI  Bioinforma4cs   –  Everyone  who  makes  their   soSware  open  source   Sanity:  Family  and  friends   Funding:  APA  and  VLSCI   Sanity:  Family  and  friends  
  85. Acknowledgements   Data   –  Ryan  Lister  et  al.  (UWA,

     Salk   Ins4tute)     –  Sue  Clark,  Aaron  Statham  (Garvan   Ins4tute)   –  Emma  Whitelaw,  Harry  Oey  (La   Trobe)   –  Kasper  Hansen,  Rafael  Irizarry   (Johns  Hopkins,  Harvard)   –  Everyone  who  makes  their  data   publicly  available   Methodology  &  technology   –  Kasper  Hansen,  Rafael  Irizarry   (Johns  Hopkins,  Harvard)   –  Felix  Krueger  (Babraham  Ins4tute)   –  Toby  Sargeant  (WEHI)   –  Keith  SaEerley  (WEHI)   –  Bioconductor  developers   –  WEHI  Bioinforma4cs   –  Everyone  who  makes  their   soSware  open  source   Sanity:  Family  and  friends   Funding:  APA  and  VLSCI   Sanity:  Family  and  friends  
  86. Acknowledgements   Data   –  Ryan  Lister  et  al.  (UWA,

     Salk   Ins4tute)     –  Sue  Clark,  Aaron  Statham  (Garvan   Ins4tute)   –  Emma  Whitelaw,  Harry  Oey  (La   Trobe)   –  Kasper  Hansen,  Rafael  Irizarry   (Johns  Hopkins,  Harvard)   –  Everyone  who  makes  their  data   publicly  available   Methodology  &  technology   –  Kasper  Hansen,  Rafael  Irizarry   (Johns  Hopkins,  Harvard)   –  Felix  Krueger  (Babraham  Ins4tute)   –  Toby  Sargeant  (WEHI)   –  Keith  SaEerley  (WEHI)   –  Bioconductor  developers   –  WEHI  Bioinforma4cs   –  Everyone  who  makes  their   soSware  open  source   Sanity:  Family  and  friends   Funding:  APA  and  VLSCI   Sanity:  Family  and  friends