0 4 / 3 0 / 1 9 9 0 | L S T 8 : 1 9 : 5 0 | U T C 0 : 0 0 : 0 0 5 / 0 1 / 1 9 9 0 | | J u l i a n D a t 2 4 4 8 0 1 2 . 5 0 0 0 0 | D a w n 4 : 1 0 | W a t c h | D u s k 2 2 : 1 5 | L i s t i n g o f f | N i t e L n 5 : 5 5 | P l o t o f f | N S t e p 1 | M e n u P l a n e t D a t a | S t p S z R T C L O C K | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O C X R . A . D e c A z A l t H L o n g H L a t S u 2 : 3 2 . 3 1 4 : 5 8 2 7 8 : 4 0 1 2 : 3 8 2 2 0 : 2 2 M o 8 : 0 9 . 9 2 1 : 1 1 1 8 6 : 0 6 6 5 : 5 3 1 1 9 : 5 5 1 : 0 4 M e 2 : 4 9 . 4 1 7 : 3 9 2 7 7 : 4 8 1 7 : 2 6 2 1 4 : 0 8 1 : 4 3 V e 2 3 : 4 9 . 4 - 2 : 2 5 2 9 6 : 5 3 - 2 7 : 3 9 2 8 2 : 3 9 - 1 : 3 0 M a 2 2 : 3 9 . 8 - 1 0 : 0 9 3 0 8 : 1 7 - 4 4 : 1 4 2 9 7 : 5 6 - 1 : 4 3 J u 6 : 3 0 . 9 2 3 : 2 3 2 3 5 : 1 3 5 9 : 0 4 1 0 6 : 1 6 0 : 0 8 S a 1 9 : 4 9 . 6 - 2 0 : 5 3 1 7 : 2 4 - 6 5 : 1 4 2 8 9 : 4 5 0 : 1 0
r i n s i c . h : N o s u c h f i l e o r d i r e c t o r y . . . $ a p t - f i l e s e a r c h X 1 1 / I n t r i n s i c . h l i b x t - d e v : / u s r / i n c l u d e / X 1 1 / I n t r i n s i c . h Missing library (-l) / u s r / b i n / l d : c a n n o t f i n d - l X e x t . . . $ a p t - f i l e s e a r c h l i b X e x t . a l i b x e x t - d e v : / u s r / l i b / i 3 8 6 - l i n u x - g n u / l i b X e x t . a
y = O b j ( ) b o d y . a n y . t y p e = e p h e m . P L A N E T b o d y . p l . c o d e = e p h e m . S U N e p h e m . c o m p u t e L o c a t i o n ( c i r c u m , b o d y ) p r i n t e p h e m . f o r m a t H o u r s ( o . a n y . r a , 3 6 0 0 0 ) p r i n t e p h e m . f o r m a t D e g r e e s ( o . a n y . d e c , 3 6 0 0 )
a t i c P y G e t S e t D e f b o d y _ g e t s e t [ ] = { { " r a " , g e t _ r a , 0 , " r i g h t a s c e n s i o n " } , { " d e c " , g e t _ d e c , 0 , " d e c l i n a t i o n " } , { " e l o n g " , g e t _ e l o n g , 0 , " e l o n g a t i o n " } , { " m a g " , g e t _ m a g , 0 , " m a g n i t u d e " } , ⋮ }
E p h e m W i n 3 2 b u i l d e r r o r s S u b j e c t : w i n 3 2 , d o e s P h E p h e m w o r k t h e r e t o o ? S u b j e c t : t r y i n g t o d o w n l o a d b u t I c a n t u n z i p i t
e p h e m o n M a c P P C S u b j e c t : p y E p h e m w o n ’ t b u i l d o n S n o w L e o p a r d S u b j e c t : P y E p h e m … I n s t a l l a t i o n e r r o r i n o p e n s u s e S u b j e c t : P y E p h e m o n U b u n t u 1 0 . 1 0 S u b j e c t : P y e p h e m o n a 6 4 - b i t W i n 7 P C ?
s d . j p l . n a s a . g o v / p u b / e p h / p l a n e t s / a s c i i / N a m e D a t e M o d i f i e d ⋮ d e 4 0 5 / 1 0 / 7 / 0 7 8 : 0 0 : 0 0 P M d e 4 0 6 / 3 / 2 2 / 1 1 8 : 0 0 : 0 0 P M ⋮ d e 4 2 1 / 2 / 6 / 1 3 7 : 0 0 : 0 0 P M d e 4 2 2 / 8 / 3 / 1 1 8 : 0 0 : 0 0 P M d e 4 2 3 / 3 / 3 0 / 1 0 8 : 0 0 : 0 0 P M ⋮
its General Assemblies in 1997 and 2000 are the most significant set of international agreements in positional astronomy in several decades and arguably since the Paris conference of 1896.”
C l o s e d w o r l d ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ A w e s o m e ! L e s s a w e s o m e ↑ ↑ Y o u r l i b r a r y → × A l t e r n a t i v e ? R e w r i t e ?
C l o s e d w o r l d ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ A w e s o m e ! C l o s e d a w e s o m e ↑ ↑ Y o u r l i b r a r y → Y o u r l i b r a r y
w o r l d C l o s e d w o r l d ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ A w e s o m e ! C l o s e d a w e s o m e ↑ ↑ Y o u r l i b r a r y → Y o u r l i b r a r y
' 2 0 1 2 / 1 1 / 9 ' m = e p h e m . m a r s ( d ) p r i n t ( m . a _ r a , m . a _ d e c ) # S k y f i e l d , i n s t e a d : d = J u l i a n D a t e ( ' 2 0 1 2 / 1 1 / 9 ' ) p = e a r t h ( d ) . o b s e r v e ( m a r s ) . a s t r o m e t r i c ( ) p r i n t ( p . r a , p . d e c )
e p h e m . M a r s ( ) m a r s . c o m p u t e ( ' 2 0 1 2 / 1 1 / 9 ' ) p r i n t ( m . r a , m . d e c ) # M a r s # . n a m e # . d a t e # . c o m p u t e ( ) → ↘ # . r a ↖ ↓ # . d e c ← ← ← ← ← ← ← ↙ # ⋮
o s i t i o n s = [ ] f o r d a t e i n d a t e s : m a r s . c o m p u t e ( d ) p o s i t i o n s . a p p e n d ( ( m a r s . r a , m a r s . d e c ) ) # S k y f i e l d : c o o r d s = [ m a r s ( d ) . a s t r o m e t r i c ( ) f o r d i n d a t e s ] p o s i t i o n s = [ ( c . r a , c . d e c ) f o r c i n c o o r d s ]
s t ( s e t ( m e s s a g e _ s t r i n g ) ) l e t t e r s . s o r t ( ) p r i n t ' ' . j o i n ( l e t t e r s ) # v s p r i n t ' ' . j o i n ( s o r t e d ( s e t ( m e s s a g e _ s t r i n g ) ) )
e p h e m . m a r s ( ' 2 0 1 2 / 1 1 / 9 ' ) p r i n t ( m . n a m e ) # z e r o w o r k p r i n t ( m . r a , m . d e c ) # c o m p u t e d p r i n t ( m . r i s e _ t i m e ) # e x p e n s i v e !
h i s o v e r a n d o v e r a g a i n ! ” m a r s . n a m e # “ L o o k s e x p e n s i v e ; I ’ l l s a v e t h e # r e s u l t t o a l o c a l n a m e i n s t e a d . ” m a r s . a p p a r e n t ( )
same with no visible relationship! m a r s . a _ r a , m a r s . a _ d e c # a s t r o m e t r i c m a r s . g _ r a , m a r s . g _ d e c # a p p a r e n t g e o c e n t r i c m a r s . r a , m a r s . d e c # a p p a r e n t t o p o c e n t r i c m a r s . a l t , m a r s . a z # a p p a r e n t h o r i z o n t a l
h e r e = t o r o n t o ( j d ) h e r e . o b s e r v e ( m a r s ) . a s t r o m e t r i c ( ) h e r e . o b s e r v e ( m a r s ) . a p p a r e n t ( ) . e q u a t o r i a l ( ) h e r e . o b s e r v e ( m a r s ) . a p p a r e n t ( ) . h o r i z o n t a l ( )
t e ) p r i n t ( c o n s t e l l a t i o n ( m . r a , m . d e c ) ) # T h i s f u n c t i o n c a n O N L Y E V E R b e p a s s e d # a r i g h t a s c e n s i o n a n d d e c l i n a t i o n ; w h y # n o t m a k e i t a c o o r d i n a t e m e t h o d ?
t e ) p r i n t m . r a # p r i n t s o n e t h i n g t o r o n t o . n e x t _ r i s i n g ( m ) p r i n t m . r a # s o m e t h i n g d i f f e r e n t !
e ( o b j e c t ) : _ l o u d = N o n e @ p r o p e r t y d e f l o u d ( s e l f ) : i f _ l o u d i s N o n e : s e l f . _ l o u d = s e l f . m e s s a g e . u p p e r ( ) r e t u r n s e l f . _ l o u d
p l e ( o b j e c t ) : d e f _ _ g e t a t t r _ _ ( s e l f , n a m e ) : i f n a m e = = ' l o u d ' : s e l f . l o u d = s e l f . m e s s a g e . u p p e r ( ) r e t u r n s e l f . l o u d r a i s e A t t r i b u t e E r r o r ( )
r e t u r n s q r t ( x * x + y * y ) p r i n t ( f ( 3 , 4 ) ) # = > 5 x = a r r a y ( [ 3 , 8 , 6 0 ] ) y = a r r a y ( [ 4 , 6 , 8 0 ] ) p r i n t ( f ( x , y ) ) # = > a r r a y ( [ 5 , 1 0 , 1 0 0 ] )
= t o d a y ( ) p = e a r t h ( j d ) . o b s e r v e ( p l a n e t ) # V e c t o r ! j d = d a t e _ r a n g e ( ' 1 9 8 0 / 1 / 1 ' , ' 2 0 1 0 / 1 / 1 ' , 1 . 0 ) p = e a r t h ( j d ) . o b s e r v e ( p l a n e t )
code base! n = c o m p u t e _ n u t a t i o n ( j d ) p = c o m p u t e _ p r e c e s s i o n ( j d . t d b ) f = J 2 0 0 0 _ t o _ I C R S t = e i n s u m ( ' j i n , k j n - > i k n ' , n , p ) t = e i n s u m ( ' i j n , j k - > i k n ' , t , f ) p o s = e i n s u m ( ' i n , i j n - > j n ' , p o s , t ) v e l = e i n s u m ( ' i n , i j n - > j n ' , v e l , t )
i t _ _ . p y f r o m . e a r t h l i b i m p o r t T o p o s f r o m . p l a n e t s i m p o r t J u p i t e r to allow f r o m s k y f i e l d i m p o r t T o p o s , J u p i t e r
y s . p a t h . a p p e n d ( ' / h o m e / a s t r o n o m i a / . l o c a l / l i b 6 4 ' ' / p y t h o n 2 . 6 / s i t e - p a c k a g e s ' ) It worked