Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
JAWS-UG大阪 AWS re:Invent 2022 re:Cap
Search
koara
December 15, 2022
Technology
0
110
JAWS-UG大阪 AWS re:Invent 2022 re:Cap
SageMaker Data Wranglerについて話しましたーー
koara
December 15, 2022
Tweet
Share
More Decks by koara
See All by koara
SST ( Serverless Stack Toolkit ) 使ってみた
ra1211
0
210
AWSでデータ解析を始めたーい
ra1211
0
300
もめんと会 Momento Cache
ra1211
0
64
JAWS-UG 名古屋 AVAハンズオン+re:Inforceの復習
ra1211
0
110
JAWS ミート 2023
ra1211
0
62
20221112_四国クラウドお遍路.pdf
ra1211
0
320
Other Decks in Technology
See All in Technology
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
260
AI開発ツールCreateがAnythingになったよ
tendasato
0
130
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
440
機械学習を扱うプラットフォーム開発と運用事例
lycorptech_jp
PRO
0
290
LLMを搭載したプロダクトの品質保証の模索と学び
qa
0
1.1k
Android Audio: Beyond Winning On It
atsushieno
0
880
Language Update: Java
skrb
2
300
企業の生成AIガバナンスにおけるエージェントとセキュリティ
lycorptech_jp
PRO
2
190
roppongirb_20250911
igaiga
1
240
自作JSエンジンに推しプロポーザルを実装したい!
sajikix
1
180
Platform開発が先行する Platform Engineeringの違和感
kintotechdev
4
570
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
290
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
810
Site-Speed That Sticks
csswizardry
10
820
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Embracing the Ebb and Flow
colly
87
4.8k
Fireside Chat
paigeccino
39
3.6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
13k
How to Ace a Technical Interview
jacobian
279
23k
Practical Orchestrator
shlominoach
190
11k
Transcript
AWS re:Invent 2022 re:Cap • 2022/12/14 • 古賀 巧
2 自己紹介 ▪氏名・年齢 古賀 巧(@koara__fftr) 27歳 ▪経歴 SESでドライバーの開発・保守 ▪資格 ▪趣味
音楽
re:Invent2022 Twitterなどで最新情報を確認しながら日本から参加 毎日(できる限り)キーノート視聴とre:Capに参加 Youtubeチャンネル Amazon Eventsでセッションを追う
Amazon SageMaker Data Wrangler を 知ってるかい
SageMaker StudioのUIが刷新
一般的な機械学習フローは
モデル作成よりもデータ準備に時間がかかる 外れ値 特徴量エンジニアリング データ形式
Amazon SageMaker Data Wrangler 機械学習 (ML) 用のデータを集約して準備するのにかかる時間を 数週間から数分に短縮します。 SageMaker Data
Wrangler を使用すると、データ準備と特徴 量エンジニアリングのプロセスを簡素化し、データ選択、クレンジング、 探索、視覚化など、データ準備ワークフローの各ステップを単一のビ ジュアルインターフェイスから実行できます。
まずはデータをインポート Amazon AppFlowでコネクタを設定
None
どんなデータか確認
どんなデータか確認
データを整形
データを整形
その他の操作
Data WranglerをStudio notebookから利用可能に データ変換の方法を選択すると、Studio notebookが コードを生成するので、同じ処理を好きな時に実行できる
notebookにデータを読み込む
データを整形
データを整形
None
データが準備できたらAutopilotにまかせるだけ ノーコード・ローコードでモデル作成まで完了
ご清聴ありがとうございました re:Invent 2023はラスベガスでお会いしましょう