Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWSでデータ解析を始めたーい
Search
koara
September 16, 2023
Technology
0
240
AWSでデータ解析を始めたーい
四国クラウドお遍路 2023
koara
September 16, 2023
Tweet
Share
More Decks by koara
See All by koara
SST ( Serverless Stack Toolkit ) 使ってみた
ra1211
0
180
もめんと会 Momento Cache
ra1211
0
62
JAWS-UG 名古屋 AVAハンズオン+re:Inforceの復習
ra1211
0
100
JAWS ミート 2023
ra1211
0
62
JAWS-UG大阪 AWS re:Invent 2022 re:Cap
ra1211
0
93
20221112_四国クラウドお遍路.pdf
ra1211
0
280
Other Decks in Technology
See All in Technology
Grid表示のレイアウトで Flow layoutsを使う
cffyoha
1
150
トレードオフスライダーにおける品質について考えてみた
suzuki_tada
3
180
2025/1/29 BigData-JAWS 勉強会 #28 (re:Invent 2024 re:Cap)/new-feature-preview-q-in-quicksight-scenarios-tried-and-tested
emiki
0
310
プロダクト観点で考えるデータ基盤の育成戦略 / Growth Strategy of Data Analytics Platforms from a Product Perspective
yamamotoyuta
0
220
Amazon Aurora バージョンアップについて、改めて理解する ~バージョンアップ手法と文字コードへの影響~
smt7174
1
250
現実的なCompose化戦略 ~既存リスト画面の置き換え~
sansantech
PRO
0
170
20250125_Agent for Amazon Bedrock試してみた
riz3f7
2
110
Microsoft Ignite 2024 最新情報!Microsoft 365 Agents SDK 概要 / Microsoft Ignite 2024 latest news Microsoft 365 Agents SDK overview
karamem0
0
190
[2024年10月版] Notebook 2.0のご紹介 / Notebook2.0
databricksjapan
0
1.6k
private spaceについてあれこれ調べてみた
operando
1
170
例外処理を理解して、設計段階からエラーを「見つけやすく」「起こりにくく」する
kajitack
12
3.8k
あなたの興味は信頼性?それとも生産性? SREとしてのキャリアに悩むみなさまに伝えたい選択肢
jacopen
6
3.2k
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
222
9.2k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.4k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
6
220
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
39
1.9k
What's in a price? How to price your products and services
michaelherold
244
12k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Building Better People: How to give real-time feedback that sticks.
wjessup
366
19k
Building Your Own Lightsaber
phodgson
104
6.2k
Automating Front-end Workflow
addyosmani
1367
200k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
Transcript
AWSでデータ分析を始めたーい クラウドお遍路 2023/09/16
Who am I ? { "name": "古賀巧", "X_id": "@koara__fftr", "age":
27, "career": [ “C”, ”C++”, ”C#”, ”JavaScript”, ”PHP”], "hobbies": ["音楽"], "certifications": [ ], "favorite_AWS_service": "AWS Lambda", "other": [ ] }
・はじめに ・データ分析の流れ ・AWSのデータ分析サービス ・Amazon AthenaでNo ETLで、分析してみる ・AWS Glue DataBrewでETLして、分析してみる ・まとめ
Contents
はじめに AWSを使いたい動機 オンプレで大量のデータを扱うためのリソースの調達や管理などが難しい したくない サクッと試して、今あるデータでどんなことをできるか知りたい 小さく作って、早く失敗して、改善していきたい
はじめに データ分析の流れ データ収集 蓄積・加工 可視化・分析
データ分析の流れ 1° 収集 データを集める 例) システムのアクセスログ IoTセンサーのデータ 購買履歴 音声データ SNSデータ
データ分析の流れ 部門や地域で サイロ化したデータを DLに集める 2°-1 蓄積・加工 DWH、DMに格納 分析しやすい形式に加工 ETL処理
データ分析の流れ Extraxt 2°-2 加工処理 データ分析全体の8割くらいを占める Transform Load Extraxt Load Transform
データを加工してから、書き出す →非構造化データにも対応 データを書き出してから、加工する
データ分析の流れ 2°で加工したデータを BIツールでの可視化や 機械学習の学習データとして活用 3° 可視化・分析
AWSのデータ分析サービス 収集 蓄積・加工 可視化・分析
Amazon AthenaでNo ETLで、分析してみる Amazon Athena サーバレスでインフラ管理不要 S3に保存・蓄積したログに対してSQLクエリを投げて データをロードせずに直接分析を行える
Amazon AthenaでNo ETLで、分析してみる 1°データをS3に保存する サポートしているデータ形式 Apache Parquet ORC CloudTrail ログ
CSV、TSV JSON など 行指向データ 行ごとにデータを保存 特定の列を扱う場合でも、行全体を読み込む必要がある 列指向データ 列ごとにデータを保存 特定の列だけ扱う処理では、行全体を読み込む必要がない
Amazon AthenaでNo ETLで、分析してみる 2°「データベース」と「テーブル」の作成 データベース・・・テーブルをグループにまとめる テーブル・・・列名、データ型などを定義 テーブル定義の作成 ・DDL(Data Define Language)で定義する
・Glue Crawlerで自動作成 列名やデータ型を推測して、作成してくれる
Amazon AthenaでNo ETLで、分析してみる 3°SQLでクエリ クエリ結果はS3に自動保存 コンソールから履歴も確認できる ANSI標準のSQLが使える(標準のSQL)
Amazon AthenaでNo ETLで、分析してみる +α 横串検索(Federated Query) データコネクタを利用した、複数データソースに横断的なクエリを実行
Amazon Athenaのパフォーマンスチューニング その他 Amazon Athena のパフォーマンスチューニング Tips トップ 10 https://aws.amazon.com/jp/blogs/news/top-10-performance-tuning-tips-for-amazon-athena/
1° スキャンするデータ量を減らす →列指向データ(Apache Parquet、ORCなど)を使用する →データの圧縮(Snappy→圧縮/解凍が速い, LZOなど) 2° 小さいサイズをまとめる 128MB以上にする 3° データをパーティションで分割する 例)2023/09/13 /14 /15 Amazon Athena でのパーティション射影 https://docs.aws.amazon.com/ja_jp/athena/latest/ug/partition-projection.html
Amazon AthenaとAmazon Redshift Spectrum Amazon Athena サーバーレス スキャンしたデータ量で課金 (1TBあたり$5) クエリタイムアウト時間
:30分 Amazon Redshift Spectrum Redshift クラスタの管理が必要 クラスタの実行時間で課金 より大規模なデータや 複数テーブルのJOINなどの複雑なクエリを実行 パフォーマンスはより安定
簡単に(?) AWS Glue DataBrewでETLして、分析してみる AWS Glue DataBrew は視覚的なデータ準備ツール であり、データアナリストやデー タサイエンティストはデータをより簡単にクリーンアップおよび正規化し、分析や機
械学習 (ML) の準備をすることができます。250 を超える事前構築された変換から 選択して、コードを記述することなくデータ準備タスクを自動化 できます。異常のフィ ルタリング、標準形式へのデータの変換、無効な値の修正などのタスクを自動化で きます。データの準備が整ったら、 すぐに分析と ML プロジェクトに使用で きます。 実際に使用した分に対してのみ料金が発生します。前払いの義務はありません。 https://aws.amazon.com/jp/glue/features/databrew/
簡単に(?) AWS Glue DataBrewでETLして、分析してみる DataBrewプロジェクトを作成 DataBrew レシピにデータ加工処理を記録
簡単に(?) AWS Glue DataBrewでETLして、分析してみる 一旦、赤枠のデータ操作は無視してデータと向き合う (坐禅タイム
簡単に(?) AWS Glue DataBrewでETLして、分析してみる 列ごとに統計情報と それに対するレコメンドを確認できる
簡単に(?) AWS Glue DataBrewでETLして、分析してみる レシピはGUIで作成することを前提にしている
簡単に(?) AWS Glue DataBrewでETLして、分析してみる レシピからジョブを作成
簡単に(?) AWS Glue DataBrewでETLして、分析してみる 出力先を指定して、ジョブを実行 実行した結果をQuickSightで可視化(マニフェストファイルの作成が必要)
Glue Databrew Glue Studio データを可視化して GUIでETLジョブの作成 用意された変換処理が200種類以上 GUIとコード両方を使用可能 ETLジョブの作成、実行、実行状況の監視
用意された変換処理は 40個 2つを組み合わせて使用することも可能 Glue DataBrewでデータの傾向把握と用意された変換処理を行い Glue DataBrewで足りない部分はGlue Studioでコードを書いて実現
まとめ AWSを使うことで ・データアクセスの民主化 + ・ツールの民主化 ・分析スキルの民主化へ
ちょっと宣伝
ちょっと宣伝2