Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
スタディサプリのデータ基盤を支えるETLとパイプラインの技術 / meetup_tanda
Search
Recruit
PRO
January 27, 2022
Technology
4
2.5k
スタディサプリのデータ基盤を支えるETLとパイプラインの技術 / meetup_tanda
2022/01/27_スタディサプリのデータ基盤を支える技術 2022 -RECRUIT TECH MEET UP #3-での、丹田の講演資料になります
Recruit
PRO
January 27, 2022
Tweet
Share
More Decks by Recruit
See All by Recruit
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
2
180
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
250
プロダクトマネジメントの分業が生む「デリバリーの渋滞」を解消するTPMの越境
recruitengineers
PRO
3
880
あなたの知らない Linuxカーネル脆弱性の世界
recruitengineers
PRO
4
330
dbtとBigQuery MLで実現する リクルートの営業支援基盤のモデル開発と保守運用
recruitengineers
PRO
5
260
『ホットペッパービューティー』のiOSアプリをUIKitからSwiftUIへ段階的に移行するためにやったこと
recruitengineers
PRO
4
1.8k
経営の意思決定を加速する 「事業KPIダッシュボード」構築の全貌
recruitengineers
PRO
4
420
Browser
recruitengineers
PRO
12
4.1k
JavaScript 研修
recruitengineers
PRO
9
2.2k
Other Decks in Technology
See All in Technology
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
120
Building Serverless AI Memory with Mastra × AWS
vvatanabe
0
350
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
130
日本の AI 開発と世界の潮流 / GenAI Development in Japan
hariby
1
230
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
140
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
260
Identity Management for Agentic AI 解説
fujie
0
410
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
4
810
2025年 開発生産「可能」性向上報告 サイロ解消からチームが能動性を獲得するまで/ 20251216 Naoki Takahashi
shift_evolve
PRO
2
220
【U/Day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
1.4k
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
240
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
400
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
0
99
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
400
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
Highjacked: Video Game Concept Design
rkendrick25
PRO
0
240
Why Our Code Smells
bkeepers
PRO
340
57k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
88
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
36
Exploring anti-patterns in Rails
aemeredith
2
200
Transcript
#Rtech スタディサプリのデータ基盤を支える データパイプラインの技術と運用 丹田 尋 スタディサプリのデータ基盤を支える技術 2022 ーRECRUIT TECH MEET
UP #3ー
#Rtech 2020年リクルート新卒入社。 データ基盤の開発・運用、移管プロジェクト などに携わり、現在は MLOps 周りも担 当。 MLを用いた顧客スコア算出・活用のプロ ジェクトにも参画。 丹田
尋
#Rtech Agenda | 01 02 03 04 データ基盤を支えるデータパイプラインの概要 パフォーマンス面での4つの工夫 データ基盤運用面での4つの工夫
まとめと今後の展望
#Rtech データ基盤を支える データパイプラインの概要 01
#Rtech スタディサプリのデータ基盤アーキテクチャ(簡略版) Kinesis + lambda + (S3) Serverside Log firebase
Analytics Client Log (Web / App) Cloud Storage BigQuery AWS GCP PostgreSQL / mongoDB / MySQL CRM SecureDB
#Rtech 全体の処理を Cloud Composer で制御 ➔ GCPが提供している Apache Airflow で構築された、フルマネージドのワークフ
ローオーケストレーションサービス ➔ DAG(有向非巡回グラフ)形式のパイプラインを Python で記述可能 ➔ Airflow のスケジューラーやワーカーが、 GKE 上で動作可能 ➔ 豊富なメトリクス画面がビルドイン Cloud Composer とは 実際の定常処理のDAG
#Rtech BigQuery導入で集計が高速化するも、効果は限定的 BigQuery 導入での効果 ➔ DWH を BigQuery へ移行することで、集計処理時間は飛躍的に高速化さ れた
◆ 例)「課金ログを元に学習者の会員ステータスを管理するテーブル」の 集計時間が 60min(hive) → 1min(BQ) に短縮 実際の状況 ➔ しかし、日次処理全体の処理時間や労力が激減はしなかった BigQuery導入後の実際の状況
#Rtech データ転送処理がボトルネックになっている ➔ 日次処理時間の大半が BashOperator で 占めており、BigQueryOperator は短い ➔ BashOperator
は、データ転送のタスクがほ とんど データ転送処理のパフォーマンスが改善できれ ば、全体の高速化が見込める BashOperator(27.3h) BigQueryOperator(2.8h) Composer での 日次処理時間の内訳 パフォーマンス面での課題
#Rtech データ定常処理を支える運用の負担が大きい 運用面での課題 運用面での課題 実際に直面した苦労・失敗 ① 利用者との期待値調整ができておらず、 運用者も努力目標が不明確 • 集計が遅延した時、どのレベルで誰に周知していいか悩んだ
② リソース管理 や CI/CD が不十分で、 障害発生のリスクがあった • オペミスにより本番環境に不要なファイルがデプロイされ定常 処理が止まる • 新たなインスタンスを立てたらモジュールがインストールされて おらず処理が止まった ③ 障害の検知に遅れることがあった • 定常処理のステータスが瞬時に把握できない • ディスク不足やネットワークのポートの枯渇などの把握に遅 れ、障害が発生 ④ 障害対応がスムーズに行かない • 障害復旧が職人芸化され、属人化している部分があった
#Rtech データの定常処理を効率化する パフォーマンス面・運用面での Tips を紹介します 今回のテーマ
#Rtech パフォーマンス面での4つの工夫 02
#Rtech 日次処理における処理の平準化 合計 実行時間 時間帯 ログ 取り込み マスター 取り込み 外部データ
取り込み BQ集計 外部データ 提供 ログ 取り込み ログ 取り込み 外部データ 取り込み ピークタイムをずらし、マシンへの 負荷の平準化 パフォーマンスチューニングの工夫① Composer で使われている GKE ノードへの負荷を抑えるため、リソースが空い ている時間を有効活用
#Rtech 合計 実行時間 時間帯 ログ 取り込み マスター 取り込み 外部データ 取り込み
BQ集計 外部データ 提供 ログ 取り込み peak_time normal_time idle_time 時間帯ごとにGKEノード数を設定(1日3段階) パフォーマンスチューニングの工夫② 1日の中で、Composer への負荷は濃淡があるためノード数を時間帯ごとに設定 Composer の GKE ノード数を負荷に合わせて調整 ※BashOperator から上記のコマンドを実行
#Rtech タスクの並列数を調整可能に パフォーマンスチューニングの工夫③ 個別のタスクの処理時間を測定し タスク並列数を調整 ↓このように、Airflow の Variablesで 4並列から直列に変更も可能 サーバーサイドログ取り込み処理の
Graph View
#Rtech Embulk を Cloud Run で実行 パフォーマンスチューニングの工夫④ ➔ 複数処理による同一リソースの食い合いをサーバーレス化で解決 ◆
処理の高速化 ➔ 必要な時に必要な分だけリソースを確保してくれる ◆ コスト面での大幅削減 ◆ スケーラビリティの拡充 Cloud Run
#Rtech 急激な負荷に迅速に対応した2つの事例 ➔ COVID-19 で一斉休校になり、 データ量が増大 ◆ 処理の平準化、リソースを負 荷に合わせて調整すること で対応
➔ 季節要因でログが急増 ◆ 並列数を減らして最大負荷 を下げる 冬休み 最終日 GW 最終日 ログ取り込み時間の推移
#Rtech データ基盤運用面での4つの工夫 03
#Rtech データ定常処理を支える運用の負担が大きい(再掲) 運用面での課題 運用面での課題 実際に直面した苦労・失敗 ① 利用者との期待値調整ができておらず、 運用者も努力目標が不明確 • 集計が遅延した時、どのレベルで誰に周知していいか悩んだ
② リソース管理 や CI/CD が不十分で、 障害発生のリスクがあった • オペミスにより本番環境に不要なファイルがデプロイされ定常 処理が止まる • 新たなインスタンスを立てたらモジュールがインストールされて おらず処理が止まった ③ 障害の検知に遅れることがあった • 定常処理のステータスが瞬時に把握できない • ディスク不足やネットワークのポートの枯渇などの把握に遅 れ、障害が発生 ④ 障害対応がスムーズに行かない • 障害復旧が職人芸化され、属人化している部分があった
#Rtech SLAを定め、モニタリングする データ基盤運用面の工夫① ➔ データのステークホルダーと協議し 主要データを何時までに提供する か合意し期待値調整をする ➔ 障害の条件を定義し、半年間のSLA をチームで決める
➔ 週次定例でチームメンバー全員で SLAの実績を確認 SLA (1) 10時時点で、Table Aが作成されていること (2) 12時時点で、spreadsheet吐き出しタスクが完了し ていること (3) 13時時点で、集計データの外部連携まで完了して いること
#Rtech CI/CDとインフラコード化を徹底し、障害を予防 ➔ CI/CDツールとして Cloud Build を導入 ◆ クエリチェック、パイプラインチェック、構文チェックを行う •
過去のしくじり:Python ファイルのエラーでDAGが壊れ定常処理 が走らない ◆ Composer , Cloud Run へのデプロイを自動で行う • 過去のしくじり:デプロイ先がファイルの変更箇所に応じて2箇所あ り、デプロイ忘れが発生 ➔ Terraform でのGCPコンポーネント管理 ◆ 構成の再現性を担保 データ基盤運用面の工夫②
#Rtech 監視項目を整理し、アラート設定をして障害を迅速に検知 データ基盤運用面の工夫③ ➔ Airflow の Operator の成功/失敗コールバックに Slack のPOST処理をか
ませる ➔ 重要なテーブルデータの整合性を検証するタスクを設け Slack 通知 ◆ 過去のしくじり • Operator は成功しているが、中身のデータが不整合だった ➔ DAGの重複依存関係や Composer でのエラーアラートを設定
#Rtech 障害対応をスムーズに データ基盤運用面の工夫④ ➔ ドキュメント化の徹底 ◆ エスカレ対応の条件 ◆ 対応方法・コツ ◆
対応の心構え ◆ 対応時のログを残す 誰でも同じ品質の対応ができる
#Rtech スケジュールを集約しワンタッチで障害対応が可能に データ基盤運用面の工夫④ AM3:00 AM6:00 AM9:00 旧方式 新方式 タスク的な依存関係はあるが、 データ提供の時間にズレがあるた
め、十分時間をあけて個別にスケ ジュールさせていた。 上流のタスクに障害があると、全て のタスクを時間を置いてそれぞれ 実行する必要があった。 特定の時間まで後続のタスクを進 ませない wait タスクを挟みスケ ジュールを1つに集約。 1つのタスクを再実行すれば自動で 後続も順次実行され障害対応コス トが下がった。 task A task A wait B wait C task B task C task B task C 新旧方式のDAG構成のイメージ図
#Rtech 4つのポイントを仕組み化しPDCAをまわし属人化を解消 データ基盤運用面の工夫のまとめ ① SLA定義 & モニタリング整備 ② 障害の予防 ③
障害の検知 ④ 障害対応
#Rtech まとめと今後の展望 04
#Rtech データ処理のパフォーマンス面・運用面での改善を行った パフォーマンス面 運用面 ➔ 日次処理における処理の平準化 ➔ Composer のGKEノード数を負荷に合わせて 調整
➔ タスクの並列数を調整可能に ➔ Embulk を Cloud Run で実行 ➔ SLAを定め、モニタリングする ➔ CI/CDとインフラコード化を徹底し、障害を 予防 ➔ 監視項目を整理し、アラート設定をして障 害を迅速に通知 ➔ 障害をワンタッチで対応可能に まとめ
#Rtech 今後の展望 ➔ Composer の更なるロバスト化 ◆ 2系で導入された Autopilot によるオートスケーリングの実現 ➔
新データ基盤と MLOps 基盤の連携強化 ◆ データプロダクトごとに乱立している MLOps のシステム・運用を共通化 し、今回紹介したデータ基盤と連携強化 ◆ Vertex AI の活用を強化し、手軽にML開発できる仕組みを整備
#Rtech ご清聴ありがとうございました