Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第五章-交差検証と再標本化【数学嫌いと学ぶデータサイエンス・統計的学習入門】
Search
Ringa_hyj
June 15, 2020
Technology
0
250
第五章-交差検証と再標本化【数学嫌いと学ぶデータサイエンス・統計的学習入門】
第五章【数学嫌いと学ぶデータサイエンス・統計的学習入門】
Ringa_hyj
June 15, 2020
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
DVCによるデータバージョン管理
ringa_hyj
0
160
deeplakeによる大規模データのバージョン管理と深層学習フレームワークとの接続
ringa_hyj
0
73
Hydraを使った設定ファイル管理とoptunaプラグインでのパラメータ探索
ringa_hyj
0
120
ClearMLで行うAIプロジェクトの管理(レポート,最適化,再現,デプロイ,オーケストレーション)
ringa_hyj
0
120
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
840
多次元尺度法MDS
ringa_hyj
0
300
因子分析(仮)
ringa_hyj
0
160
階層、非階層クラスタリング
ringa_hyj
0
130
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
440
Other Decks in Technology
See All in Technology
初めてのDatabricks Apps開発
taka_aki
1
270
Dylib Hijacking on macOS: Dead or Alive?
patrickwardle
0
460
SQLAlchemy の select(User).where(User.id =="123") を理解してみる/sqlalchemy deep dive
3l4l5
3
320
webpack依存からの脱却!快適フロントエンド開発をViteで実現する #vuefes
bengo4com
3
3.1k
ViteとTypeScriptのProject Referencesで 大規模モノレポのUIカタログのリリースサイクルを高速化する
shuta13
3
180
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
43k
What's new in OpenShift 4.20
redhatlivestreaming
0
140
Azureコストと向き合った、4年半のリアル / Four and a half years of dealing with Azure costs
aeonpeople
1
270
serverless team topology
_kensh
3
200
CNCFの視点で捉えるPlatform Engineering - 最新動向と展望 / Platform Engineering from the CNCF Perspective
hhiroshell
0
140
今この時代に技術とどう向き合うべきか
gree_tech
PRO
2
2.2k
クラウドとリアルの融合により、製造業はどう変わるのか?〜クラスメソッドの製造業への取組と共に〜
hamadakoji
0
390
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
40
2.1k
Designing for Performance
lara
610
69k
For a Future-Friendly Web
brad_frost
180
10k
Code Reviewing Like a Champion
maltzj
526
40k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Building Applications with DynamoDB
mza
96
6.7k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
A better future with KSS
kneath
239
18k
KATA
mclloyd
PRO
32
15k
Fireside Chat
paigeccino
41
3.7k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Transcript
1 第五章 1 第五章 @Ringa_hyj 日本一の数学嫌いと学ぶ データサイエンス ~第五章:交差検証・再標本化~
2 第五章 2 第五章 対象視聴者: 数式や記号を見ただけで 教科書を閉じたくなるレベル
3 第五章 3 第五章 リサンプリング ・訓練・検証・テスト ・交差検証(ホールドアウト・一つ抜き・k分割) ・ブートストラップ
4 第五章 4 第五章 訓練・検証・テスト データ 交差検証
5 第五章 5 第五章 ・訓練・検証・テスト データ 予測モデルを作るのは 未知(将来得られる予定)のデータを予測したい 手元のデータからモデルを作っても 未知のデータに対応できているか確認はできない
データ Full dataset (sample) 学習 ロジスティック回帰 最小二乗法 モデル 未知のデータ データに対して 95%正解できる 何%?? 未知のデータに 対応している??
6 第五章 6 第五章 ・訓練・検証・テスト データ データを分割して学習用と、 未知データに対する精度の確認用として扱う データ 学習用データ
(訓練データ) train テストデータ test 学習 モデル
7 第五章 7 第五章 ・訓練・検証・テスト データ 機械学習の”学習”は何回も行い精度向上させる テストデータでの性能 & 訓練データの性能
どちらも下げるように学習 交差検証(cross-validation) 学習用データ (訓練データ) train テストデータ test 学習 モデル 精度 確認 train 学習 まだ? 終わり
8 第五章 8 第五章 ・訓練・検証・テスト データ テストデータの性能も見せてしまっているから、 未知のデータをカンニングした状態 学習用データ (訓練データ)
train テストデータ test 学習 モデル 精度 確認 train 学習 まだ? 終わり
9 第五章 9 第五章 ・訓練・検証・テスト データ さらにもう一つ分割する 検証データをカンニングさせ、 最後にテストで性能を確認する データ
学習用データ (訓練データ) train 検証データ valid 学習 モデル テストデータ test
10 第五章 10 第五章 データ Full dataset (sample) ・訓練・検証・テスト データ
未知のデータ (母集団) モデル 推定 未知のデータ (母集団) 抽出 sampling train valid test 再標本化 resampling
11 第五章 11 第五章 交差検証の手法(分割・確認) (ホールドアウト・一つ抜き・k分割・ブートストラップ)
12 第五章 12 第五章 ・ホールドアウト法(hold-out) データ だいたい半分 順番に関係がないならランダムに再標本化
13 第五章 13 第五章 ・1つ抜き法(LOOCV) leave one out cross validation
データ 一つだけのデータで性能を確認する ※たまたま外れ値のデータで検証してしまう可能性あり
14 第五章 14 第五章 ・K分割法(k-fold CV) データ データをK個(5~10くらい)に分割し、1つを検証用、残りを学習用 これでK-1回学習を行う ※一つ抜きよりも計算コストが少なく、
たまたまの外れ値を選ぶリスクも減る
15 第五章 15 第五章 ・ブートストラップ データ 重複を許す無作為抽出 ※標本データの性質を反映させやすい (多頻度登場するデータ) ブートストラップ標本
16 第五章 16 第五章
17 第五章 17 第五章
18 第五章 18 第五章
19 第五章 19 第五章
20 第五章 20 第五章
21 第五章 21 第五章
22 第五章 22 第五章
23 第五章 23 第五章
24 第五章 24 第五章
25 第五章 25 第五章
26 第五章 26 第五章
27 第五章 27 第五章
28 第五章 28 第五章
29 第五章 29 第五章
30 第五章 30 第五章
31 第五章 31 第五章